On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable
Commentationes Mathematicae Universitatis Carolinae (2001)
- Volume: 42, Issue: 1, page 83-98
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topFeireisl, Eduard. "On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable." Commentationes Mathematicae Universitatis Carolinae 42.1 (2001): 83-98. <http://eudml.org/doc/248795>.
@article{Feireisl2001,
abstract = {We show compactness of bounded sets of weak solutions to the isentropic compressible Navier-Stokes equations in three space dimensions under the hypothesis that the adiabatic constant $\gamma >3/2$.},
author = {Feireisl, Eduard},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {compressible flow; weak solutions; compactness; compressible flow; weak solutions; compactness; compressible isentropic Navier-Stokes equations},
language = {eng},
number = {1},
pages = {83-98},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable},
url = {http://eudml.org/doc/248795},
volume = {42},
year = {2001},
}
TY - JOUR
AU - Feireisl, Eduard
TI - On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 1
SP - 83
EP - 98
AB - We show compactness of bounded sets of weak solutions to the isentropic compressible Navier-Stokes equations in three space dimensions under the hypothesis that the adiabatic constant $\gamma >3/2$.
LA - eng
KW - compressible flow; weak solutions; compactness; compressible flow; weak solutions; compactness; compressible isentropic Navier-Stokes equations
UR - http://eudml.org/doc/248795
ER -
References
top- Bogovskii M.E., Solution of some vector analysis problems connected with operators div and grad (in Russian), Trudy Sem. S.L. Sobolev 80(1) 5-40 (1980). (1980) MR0631691
- Borchers W., Sohr H., On the equation and with zero boundary conditions, Hokkaido Math. J. 19 67-87 (1990). (1990) MR1039466
- DiPerna R.J., Lions P.-L., Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 511-547 (1989). (1989) Zbl0696.34049MR1022305
- Feireisl E., Matušů-Nečasová Š., Petzeltová H., Straškraba I., On the motion of a viscous compressible flow driven by a time-periodic external flow, Arch. Rational Mech. Anal. 149 69-96 (1999). (1999) MR1723036
- Feireisl E., Petzeltová H., On compactness of solutions to the Navier-Stokes equations of compressible flow, J. Differential Equations 163(1) 57-75 (2000). (2000) MR1755068
- Feireisl E., Petzeltová H., On integrability up to the boundary of the weak solutions of the Navier-Stokes equations of compressible flow, Commun. Partial Differential Equations 25(3-4) 755-767 (2000). (2000) MR1748351
- Galdi G.P., An Introduction to the Mathematical Theory of the Navier-Stokes Equations, I., Springer-Verlag, New York, 1994.
- Jiang S., Zhang P., On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations, preprint, 1999. Zbl0980.35126MR1810944
- Lions P.-L., Mathematical Topics in Fluid Dynamics, Vol.2, Compressible Models, Oxford Science Publication, Oxford, 1998. MR1637634
- Lions P.-L., Bornes sur la densité pour les équations de Navier-Stokes compressible isentropiques avec conditions aux limites de Dirichlet, C.R. Acad. Sci. Paris, Sér I. 328 659-662 (1999). (1999) MR1680813
- Yi Z., An theorem for compensated compactness, Proc. Royal Soc. Edinburgh 122A (1992), 177-189. (1992) Zbl0848.32025MR1190238
Citations in EuDML Documents
top- Vincent Girinon, Navier-Stokes equations with nonhomogeneous boundary conditions in a convex bi-dimensional domain
- Vít Dolejší, Miloslav Feistauer, Jiří Felcman, Výpočtová matematika a počítačová dynamika tekutin
- Jens Frehse, Sonja Goj, Josef Málek, A uniqueness result for a model for mixtures in the absence of external forces and interaction momentum
- Eduard Feireisl, On the motion of rigid bodies in a viscous fluid
- Eduard Feireisl, Some recent results on the existence of global-in-time weak solutions to the Navier-Stokes equations of a general barotropic fluid
- Nader Masmoudi, Homogenization of the compressible Navier–Stokes equations in a porous medium
- Nader Masmoudi, Homogenization of the compressible Navier–Stokes equations in a porous medium
- Jan Březina, Antonín Novotný, On weak solutions of steady Navier-Stokes equations for monatomic gas
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.