Limit theorems for stationary Markov processes with L2-spectral gap
Déborah Ferré; Loïc Hervé; James Ledoux
Annales de l'I.H.P. Probabilités et statistiques (2012)
- Volume: 48, Issue: 2, page 396-423
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topFerré, Déborah, Hervé, Loïc, and Ledoux, James. "Limit theorems for stationary Markov processes with L2-spectral gap." Annales de l'I.H.P. Probabilités et statistiques 48.2 (2012): 396-423. <http://eudml.org/doc/272051>.
@article{Ferré2012,
abstract = {Let $(X_\{t\},Y_\{t\})_\{t\in \mathbb \{T\}\}$ be a discrete or continuous-time Markov process with state space $\mathbb \{X\}\times \mathbb \{R\}^\{d\}$ where $\mathbb \{X\}$ is an arbitrary measurable set. Its transition semigroup is assumed to be additive with respect to the second component, i.e. $(X_\{t\},Y_\{t\})_\{t\in \mathbb \{T\}\}$ is assumed to be a Markov additive process. In particular, this implies that the first component $(X_\{t\})_\{t\in \mathbb \{T\}\}$ is also a Markov process. Markov random walks or additive functionals of a Markov process are special instances of Markov additive processes. In this paper, the process $(Y_\{t\})_\{t\in \mathbb \{T\}\}$ is shown to satisfy the following classical limit theorems: (a) the central limit theorem, (b) the local limit theorem, (c) the one-dimensional Berry–Esseen theorem, (d) the one-dimensional first-order Edgeworth expansion, provided that we have $\sup _\{t\in (0,1]\cap \mathbb \{T\}\}\mathbb \{E\}_\{\pi ,0\}[|Y_\{t\}|^\{\alpha \}]<\infty $ with the expected orderα with respect to the independent case (up to some εgt; 0 for (c) and (d)). For the statements (b) and (d), a Markov nonlattice condition is also assumed as in the independent case. All the results are derived under the assumption that the Markov process $(X_\{t\})_\{t\in \mathbb \{T\}\}$ has an invariant probability distributionπ, is stationary and has the $\mathbb \{L\}^\{2\}(\pi )$ -spectral gap property (that is, (Xt)t∈ℕ is ρ-mixing in the discrete-time case). The case where $(X_\{t\})_\{t\in \mathbb \{T\}\}$ is non-stationary is briefly discussed. As an application, we derive a Berry–Esseen bound for theM-estimators associated with ρ-mixing Markov chains.},
author = {Ferré, Déborah, Hervé, Loïc, Ledoux, James},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Markov additive process; central limit theorems; Berry–Esseen bound; edgeworth expansion; spectral method; ρ-mixing; M-estimator; discrete or continuous-time Markov process; Markov random walk; additive functional; stationary Markov process; -spectral gap property; geometric ergodicity; uniform ergodicity; -mixing Markov chain; Fourier operator; central limit theorem; functional central limit theorem; local limit theorem; Berry-Esseen theorem; Edgeworth expansion; -estimator},
language = {eng},
number = {2},
pages = {396-423},
publisher = {Gauthier-Villars},
title = {Limit theorems for stationary Markov processes with L2-spectral gap},
url = {http://eudml.org/doc/272051},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Ferré, Déborah
AU - Hervé, Loïc
AU - Ledoux, James
TI - Limit theorems for stationary Markov processes with L2-spectral gap
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2012
PB - Gauthier-Villars
VL - 48
IS - 2
SP - 396
EP - 423
AB - Let $(X_{t},Y_{t})_{t\in \mathbb {T}}$ be a discrete or continuous-time Markov process with state space $\mathbb {X}\times \mathbb {R}^{d}$ where $\mathbb {X}$ is an arbitrary measurable set. Its transition semigroup is assumed to be additive with respect to the second component, i.e. $(X_{t},Y_{t})_{t\in \mathbb {T}}$ is assumed to be a Markov additive process. In particular, this implies that the first component $(X_{t})_{t\in \mathbb {T}}$ is also a Markov process. Markov random walks or additive functionals of a Markov process are special instances of Markov additive processes. In this paper, the process $(Y_{t})_{t\in \mathbb {T}}$ is shown to satisfy the following classical limit theorems: (a) the central limit theorem, (b) the local limit theorem, (c) the one-dimensional Berry–Esseen theorem, (d) the one-dimensional first-order Edgeworth expansion, provided that we have $\sup _{t\in (0,1]\cap \mathbb {T}}\mathbb {E}_{\pi ,0}[|Y_{t}|^{\alpha }]<\infty $ with the expected orderα with respect to the independent case (up to some εgt; 0 for (c) and (d)). For the statements (b) and (d), a Markov nonlattice condition is also assumed as in the independent case. All the results are derived under the assumption that the Markov process $(X_{t})_{t\in \mathbb {T}}$ has an invariant probability distributionπ, is stationary and has the $\mathbb {L}^{2}(\pi )$ -spectral gap property (that is, (Xt)t∈ℕ is ρ-mixing in the discrete-time case). The case where $(X_{t})_{t\in \mathbb {T}}$ is non-stationary is briefly discussed. As an application, we derive a Berry–Esseen bound for theM-estimators associated with ρ-mixing Markov chains.
LA - eng
KW - Markov additive process; central limit theorems; Berry–Esseen bound; edgeworth expansion; spectral method; ρ-mixing; M-estimator; discrete or continuous-time Markov process; Markov random walk; additive functional; stationary Markov process; -spectral gap property; geometric ergodicity; uniform ergodicity; -mixing Markov chain; Fourier operator; central limit theorem; functional central limit theorem; local limit theorem; Berry-Esseen theorem; Edgeworth expansion; -estimator
UR - http://eudml.org/doc/272051
ER -
References
top- [1] S. Asmussen. Ruin Probabilities. World Sci. Publishing Co. Inc., River Edge, NJ, 2000. Zbl1247.91080MR1794582
- [2] S. Asmussen. Applied Probability and Queues, Vol. 51, 2nd edition. Springer-Verlag, New York, 2003. Zbl1029.60001MR1978607
- [3] S. Asmussen, F. Avram and M. R. Pistorius. Russian and American put options under exponential phase-type Lévy models. Stochastic Process. Appl.109 (2004) 79–111. Zbl1075.60037MR2024845
- [4] M. Babillot. Théorie du renouvellement pour des chaînes semi-markoviennes transientes. Ann. Inst. H. Poincaré Probab. Statist.24 (1988) 507–569. Zbl0681.60095MR978023
- [5] A. Benveniste and J. Jacod. Systèmes de Lévy des processus de Markov. Invent. Math.21 (1973) 183–198. Zbl0265.60074MR343375
- [6] J. Bergh and J. Löfström. Interpolation Spaces. An Introduction. Springer-Verlag, Berlin, 1976. Zbl0344.46071MR482275
- [7] R. N. Bhattacharya. On the functional central limit theorem and the law of the iterated logarithm for Markov processes. Probab. Theory Related Fields60 (1982) 185–201. Zbl0468.60034MR663900
- [8] P. Billingsley. Probability and Measure, 3rd edition. John Wiley & Sons Inc., New York, 1995. Zbl0649.60001
- [9] M. Bladt, B. Meini, M. F. Neuts and B. Sericola. Distributions of reward functions on continuous-time Markov chains. In Matrix-Analytic Methods 39–62. World Sci. Publishing, Adelaide, 2002. Zbl1015.60064MR1923878
- [10] R. C. Bradley. Basic properties of strong mixing conditions. a survey and some open questions. Probab. Surv. 2 (2005) 107–144. Zbl1189.60077MR2178042
- [11] R. C. Bradley. Introduction to strong mixing conditions (Volume I). Technical report, Indiana Univ., 2005. Zbl1134.60004
- [12] L. Breiman. Probability. SIAM, Philadelphia, PA, 1993. Zbl0753.60001MR1163370
- [13] S. Campanato. Proprietà di una famiglia di spazi funzionali. Ann. Scuola Norm. Sup. Pisa18 (1964) 137–160. Zbl0133.06801MR167862
- [14] O. Cappé, E. Moulines and T. Rydén. Inference in Hidden Markov Models. Springer, New York, 2005. Zbl1080.62065MR2159833
- [15] E. Çinlar. Markov additive processes Part II. Probab. Theory Related Fields24 (1972) 95–121. Zbl0236.60048
- [16] E. Çinlar. Introduction to Stochastic Processes. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1975. Zbl0341.60019MR380912
- [17] E. Çinlar. Shock and wear models and Markov additive processes. In The Theory and Applications of Reliability, with Emphasis on Bayesian and Nonparametric Methods, Vol. I 193–214. Academic Press, New York, 1977. Zbl0649.60031MR478365
- [18] M.-F. Chen. From Markov Chains to Non-equilibrium Particle Systems, 2nd edition. World Sci. Publishing Co. Inc., River Edge, NJ, 2004. Zbl0753.60055MR2091955
- [19] D. Dehay and J.-F. Yao. On likelihood estimation for discretely observed Markov jump processes. Aust. N. Z. J. Stat.49 (2007) 93–107. Zbl1117.62082MR2345413
- [20] J. L. Doob. Stochastic Processes. John Wiley & Sons, New York, 1953. Zbl0696.60003
- [21] Ī. Ī. Ezhov and A. V. Skorohod. Markov processes which are homogeneous in the second component. I. Theory Probab. Appl.14 (1969) 1–13. Zbl0281.60067MR267640
- [22] Ī. Ī. Ezhov and A. V. Skorohod. Markov processes which are homogeneous in the second component. II. Theory Probab. Appl.14 (1969) 652–667. Zbl0208.44104MR267640
- [23] W. Feller. An Introduction to Probability Theory and Its Applications, Vol. II. John Wiley and Sons, New York, 1971. Zbl0219.60003MR270403
- [24] D. Ferré. Développement d’Edgeworth d’ordre 1 pour des M-estimateurs dans le cas de chaînes V-géométriquement ergodiques. CRAS348 (2010) 331–334. Zbl1186.62103MR2600134
- [25] G. Fort, E. Moulines, G. O. Roberts and J. S. Rosenthal. On the geometric ergodicity of hybrid samplers. J. Appl. Probab.40 (2003) 123–146. Zbl1028.65002MR1953771
- [26] C.-D. Fuh and T. L. Lai. Asymptotic expansions in multidimensional Markov renewal theory and first passage times for Markov random walks. Adv. in Appl. Probab.33 (2001) 652–673. Zbl0995.60081MR1860094
- [27] M. Fukushima and M. Hitsuda. On a class of Markov processes taking values on lines and the central limit theorem. Nagoya Math. J.30 (1967) 47–56. Zbl0178.20603MR216568
- [28] H. Ganidis, B. Roynette and F. Simonot. Convergence rate of some semi-groups to their invariant probability. Stochastic Process. Appl.79 (1999) 243–263. Zbl0962.60073MR1671843
- [29] V. Genon-Catalot, T. Jeantheau and C. Larédo. Stochastic volatility models as hidden Markov models and statistical applications. Bernoulli6 (2000) 1051–1079. Zbl0966.62048MR1809735
- [30] P. W. Glynn and W. Whitt. Limit theorems for cumulative processes. Stochastic Process. Appl.47 (1993) 299–314. Zbl0779.60021MR1239842
- [31] P. W. Glynn and W. Whitt. Necessary conditions in limit theorems for cumulative processes. Stochastic Process. Appl.98 (2002) 199–209. Zbl1059.60025MR1887533
- [32] B. Goldys and B. Maslowski. Exponential ergodicity for stochastic reaction-diffusion equations. In Stochastic Partial Differential Equations and Applications – VII 115–131. Chapman & Hall/CRC, Boca Raton, FL, 2006. Zbl1091.35118
- [33] B. Goldys and B. Maslowski. Lower estimates of transition densities and bounds on exponential ergodicity for stochastic PDE’s. Ann. Probab.34 (2006) 1451–1496. Zbl1121.60066MR2257652
- [34] M. I. Gordin. On the central limit theorem for stationary Markov processes. Soviet Math. Dokl.19 (1978) 392–394. Zbl0395.60057
- [35] S. Gouëzel. Characterization of weak convergence of Birkhoff sums for Gibbs–Markov maps. Preprint, 2008. Zbl1213.37017
- [36] S. Gouëzel and C. Liverani. Banach spaces adapted to Anosov systems. Ergodic Theory Dynam. Systems26 (2006) 189–217. Zbl1088.37010
- [37] J.-B. Gravereaux and J. Ledoux. Poisson approximation for some point processes in reliability. Adv. in Appl. Probab.36 (2004) 455–470. Zbl1052.60038
- [38] S. Grigorescu and G. Opriçan. Limit theorems for J−X processes with a general state space. Probab. Theory Related Fields 35 (1976) 65–73. Zbl0336.60062
- [39] D. Guibourg and L. Hervé. A renewal theorem for strongly ergodic Markov chains in dimension d≥3 and in the centered case. Potential Anal. 34 (2011) 385–410. Zbl1218.60062
- [40] Y. Guivarc’h. Application d’un théorème limite local à la transcience et à la récurrence de marches aléatoires. In Théorie du potentiel (Orsay, 1983) 301–332. Lecture Notes in Math. 1096. Springer, Berlin, 1984. Zbl0562.60074
- [41] Y. Guivarc’h. Limit theorems for random walks and products of random matrices. In Proceedings of the CIMPA-TIFR School on Probability Measures on Groups, Mumbai 2002257–332. TIFR Studies in Mathematics Series. Tata Institute of Fundamental Research, Mumbai, India, 2002. Zbl1247.60009
- [42] Y. Guivarc’h and J. Hardy. Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d’Anosov. Ann. Inst. H. Poincaré Probab. Statist.24 (1988) 73–98. Zbl0649.60041
- [43] O. Häggström. Acknowledgement of priority concerning “On the central limit theorem for geometrically ergodic Markov chains.” Probab. Theory Related Fields 135 (2006) 470. Zbl1090.60508
- [44] H. Hennion and L. Hervé. Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness. Lecture Notes in Math. 1766. Springer, Berlin, 2001. Zbl0983.60005
- [45] H. Hennion and L. Hervé. Central limit theorems for iterated random Lipschitz mappings. Ann. Probab.32 (2004) 1934–1984. Zbl1062.60017MR2073182
- [46] L. Hervé. Théorème local pour chaînes de Markov de probabilité de transition quasi-compacte. Applications aux chaînes v-géométriquement ergodiques et aux modèles itératifs. Ann. Inst. H. Poincaré Probab. Statist. 41 (2005) 179–196. Zbl1085.60049MR2124640
- [47] L. Hervé. Vitesse de convergence dans le théorème limite central pour des chaînes de Markov fortement ergodiques. Ann. Inst. H. Poincaré Probab. Statist.44 (2008) 280–292. Zbl1178.60051MR2446324
- [48] L. Hervé, J. Ledoux and V. Patilea. A Berry–Esseen theorem on M-estimators for geometrically ergodic Markov chains. Bernoulli (2012). To appear. Zbl1279.60089MR2922467
- [49] L. Hervé and F. Pène. The Nagaev–Guivarc’h method via the Keller–Liverani theorem. Bull. Soc. Math. France138 (2010) 415–489. Zbl1205.60133MR2729019
- [50] M. Hitsuda and A. Shimizu. The central limit theorem for additive functionals of Markov processes and the weak convergence to Wiener measure. J. Math. Soc. Japan22 (1970) 551–566. Zbl0198.22902MR273688
- [51] H. Holzmann. Martingale approximations for continuous-time and discrete-time stationary Markov processes. Stochastic Process. Appl.115 (2005) 1518–1529. Zbl1073.60050MR2158018
- [52] I. A. Ibragimov. A note on the central limit theorem for dependent random variables. Theory Probab. Appl.20 (1975) 135–141. Zbl0335.60023MR362448
- [53] I. A. Ibragimov and Y. V. Linnik. Independent and Stationary Sequences of Random Variables. Walters-Noordhoff, the Netherlands, 1971. Zbl0219.60027MR322926
- [54] M. Jara, T. Komorowski and S. Olla. Limit theorems for additive functionals of a Markov chain. Ann. Appl. Probab.19 (2009) 2270–2300. Zbl1232.60018MR2588245
- [55] S. F. Jarner and E. Hansen. Geometric ergodicity of Metropolis algorithms. Stochastic Process. Appl.85 (2000) 341–361. Zbl0997.60070MR1731030
- [56] A. Jobert and L. C. G. Rogers. Option pricing with Markov-modulated dynamics. SIAM J. Control Optim.44 (2006) 2063–2078. Zbl1158.91380MR2248175
- [57] G. L. Jones. On the Markov chain central limit theorem. Probab. Surv.1 (2004) 299–320. Zbl1189.60129MR2068475
- [58] N. V. Kartashov. Determination of the spectral ergodicity exponent for the birth and death process. Ukrain. Math. J.52 (2000) 1018–1028. Zbl0973.60091MR1817318
- [59] J. Keilson and D. M. G. Wishart. A central limit theorem for processes defined on a finite Markov chain. Proc. Cambridge Philos. Soc.60 (1964) 547–567. Zbl0126.33504MR169271
- [60] G. Keller and C. Liverani. Stability of the spectrum for transfer operators. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999) 141–152. Zbl0956.37003MR1679080
- [61] C. Kipnis and S. R. S. Varadhan. Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Comm. Math. Phys.104 (1986) 1–19. Zbl0588.60058MR834478
- [62] P. Lezaud. Chernoff and Berry–Esseen inequalities for Markov processes. ESAIM Probab. Stat.5 (2001) 183–201. Zbl0998.60075MR1875670
- [63] T. M. Liggett. Exponential L2 convergence of attractive reversible nearest particle systems. Ann. Probab.17 (1989) 403–432. Zbl0679.60093MR985371
- [64] N. Limnios and G. Opriçan. Semi-Markov Processes and Reliability. Birkhauser Boston Inc., Boston, MA, 2001. Zbl0990.60004MR1843923
- [65] N. Maigret. Théorème de limite centrale fonctionnel pour une chaî ne de Markov récurrente au sens de Harris et positive. Ann. Inst. H. Poincaré Probab. Statist.14 (1978) 425–440. Zbl0414.60040MR523221
- [66] M. Maxwell and M. Woodroofe. A local limit theorem for hidden Markov chains. Statist. Probab. Lett.32 (1997) 125–131. Zbl0874.60023MR1436857
- [67] S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. Springer-Verlag, London, 1993. Zbl0925.60001MR1287609
- [68] S. V. Nagaev. Some limit theorems for stationary Markov chains. Theory Probab. Appl.11 (1957) 378–406. Zbl0078.31804
- [69] J. Neveu. Une généralisation des processus à accroissements positifs indépendants. Abh. Math. Sem. Univ. Hambourg25 (1961) 36–61. Zbl0103.36303MR130714
- [70] S. Özekici and R. Soyer. Reliability modeling and analysis in random environments. In Mathematical Reliability: An Expository Perspective 249–273. Kluwer Acad. Publ., Boston, MA, 2004. Zbl1044.90021MR2065488
- [71] A. Pacheco and N. U. Prabhu. Markov-additive processes of arrivals. In Advances in Queueing 167–194. CRC, Boca Raton, FL, 1995. Zbl0845.60090MR1395158
- [72] A. Pacheco, L. C. Tang and N. U. Prabhu. Markov-Modulated Processes & Semiregenerative Phenomena. World Sci. Publishing, Hackensack, NJ, 2009. Zbl1181.60005
- [73] M. Peligrad. On the central limit theorem for ρ-mixing sequences of random variables. Ann. Probab.15 (1987) 1387–1394. Zbl0638.60032MR905338
- [74] J. Pfanzagl. The Berry–Esseen bound for minimum contrast estimates. Metrika17 (1971) 81–91. Zbl0216.47805MR295467
- [75] M. Pinsky. Differential equations with a small parameter and the central limit theorem for functions defined on a finite Markov chain. Probab. Theory Related Fields9 (1968) 101–111. Zbl0155.24203MR228067
- [76] B. L. S. P. Rao. On the rate of convergence of estimators for Markov processes. Probab. Theory Related Fields26 (1973) 141–152. Zbl0248.62039MR339420
- [77] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion, 3rd edition. Springer-Verlag, Berlin, 1999. Zbl0731.60002MR1725357
- [78] G. O. Roberts and J. S. Rosenthal. Geometric ergodicity and hybrid Markov chains. Electron. Commun. Probab.2 (1997) 13–25. Zbl0890.60061MR1448322
- [79] G. O. Roberts and J. S. Rosenthal. General state space Markov chains and MCMC algorithms. Probab. Surv.1 (2004) 20–71. Zbl1189.60131MR2095565
- [80] G. O. Roberts and R. L. Tweedie. Geometric L2 and L1 convergence are equivalent for reversible Markov chains. J. Appl. Probab. 38A (2001) 37–41. Zbl1011.60050MR1915532
- [81] M. Rosenblatt. Markov Processes. Structure and Asymptotic Behavior. Springer-Verlag, New York, 1971. Zbl0236.60002MR329037
- [82] V. T. Stefanov. Exact distributions for reward functions on semi-Markov and Markov additive processes. J. Appl. Probab.43 (2006) 1053–1065. Zbl1152.60069MR2274636
- [83] J. L. Steichen. A functional central limit theorem for Markov additive processes with an application to the closed Lu–Kumar network. Stoch. Models17 (2001) 459–489. Zbl0997.60030MR1871234
- [84] A. Touati. Théorèmes de limite centrale fonctionnels pour les processus de Markov. Ann. Inst. H. Poincaré Probab. Statist.19 (1983) 43–55. Zbl0511.60029MR699977
- [85] A. W. van der Vaart. Asymptotic Statistics. Cambridge Univ. Press, Cambridge, 1998. Zbl0910.62001MR1652247
- [86] L. Wu. Essential spectral radius for Markov semigroups. I. Discrete time case. Probab. Theory Related Fields 128 (2004) 255–321. Zbl1056.60068MR2031227
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.