The Nagaev-Guivarc’h method via the Keller-Liverani theorem

Loïc Hervé; Françoise Pène

Bulletin de la Société Mathématique de France (2010)

  • Volume: 138, Issue: 3, page 415-489
  • ISSN: 0037-9484

Abstract

top
The Nagaev-Guivarc’h method, via the perturbation operator theorem of Keller and Liverani, has been exploited in recent papers to establish limit theorems for unbounded functionals of strongly ergodic Markov chains. The main difficulty of this approach is to prove Taylor expansions for the dominating eigenvalue of the Fourier kernels. The paper outlines this method and extends it by stating a multidimensional local limit theorem, a one-dimensional Berry-Esseen theorem, a first-order Edgeworth expansion, and a multidimensional Berry-Esseen type theorem in the sense of the Prohorov metric. When applied to the exponentially Ł 2 -convergent Markov chains, to the v -geometrically ergodic Markov chains and to the iterative Lipschitz models, the three first above cited limit theorems hold under moment conditions similar, or close (up to ε > 0 ), to those of the i.i.d. case.

How to cite

top

Hervé, Loïc, and Pène, Françoise. "The Nagaev-Guivarc’h method via the Keller-Liverani theorem." Bulletin de la Société Mathématique de France 138.3 (2010): 415-489. <http://eudml.org/doc/272519>.

@article{Hervé2010,
abstract = {The Nagaev-Guivarc’h method, via the perturbation operator theorem of Keller and Liverani, has been exploited in recent papers to establish limit theorems for unbounded functionals of strongly ergodic Markov chains. The main difficulty of this approach is to prove Taylor expansions for the dominating eigenvalue of the Fourier kernels. The paper outlines this method and extends it by stating a multidimensional local limit theorem, a one-dimensional Berry-Esseen theorem, a first-order Edgeworth expansion, and a multidimensional Berry-Esseen type theorem in the sense of the Prohorov metric. When applied to the exponentially $Ł^2$-convergent Markov chains, to the $v$-geometrically ergodic Markov chains and to the iterative Lipschitz models, the three first above cited limit theorems hold under moment conditions similar, or close (up to $\varepsilon &gt;0$), to those of the i.i.d. case.},
author = {Hervé, Loïc, Pène, Françoise},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Markov chains; central limit theorems; edgeworth expansion; spectral method},
language = {eng},
number = {3},
pages = {415-489},
publisher = {Société mathématique de France},
title = {The Nagaev-Guivarc’h method via the Keller-Liverani theorem},
url = {http://eudml.org/doc/272519},
volume = {138},
year = {2010},
}

TY - JOUR
AU - Hervé, Loïc
AU - Pène, Françoise
TI - The Nagaev-Guivarc’h method via the Keller-Liverani theorem
JO - Bulletin de la Société Mathématique de France
PY - 2010
PB - Société mathématique de France
VL - 138
IS - 3
SP - 415
EP - 489
AB - The Nagaev-Guivarc’h method, via the perturbation operator theorem of Keller and Liverani, has been exploited in recent papers to establish limit theorems for unbounded functionals of strongly ergodic Markov chains. The main difficulty of this approach is to prove Taylor expansions for the dominating eigenvalue of the Fourier kernels. The paper outlines this method and extends it by stating a multidimensional local limit theorem, a one-dimensional Berry-Esseen theorem, a first-order Edgeworth expansion, and a multidimensional Berry-Esseen type theorem in the sense of the Prohorov metric. When applied to the exponentially $Ł^2$-convergent Markov chains, to the $v$-geometrically ergodic Markov chains and to the iterative Lipschitz models, the three first above cited limit theorems hold under moment conditions similar, or close (up to $\varepsilon &gt;0$), to those of the i.i.d. case.
LA - eng
KW - Markov chains; central limit theorems; edgeworth expansion; spectral method
UR - http://eudml.org/doc/272519
ER -

References

top
  1. [1] J. Aaronson & M. Denker – « A local limit theorem for stationary processes in the domain of attraction of a normal distribution », in Asymptotic methods in probability and statistics with applications (St. Petersburg, 1998), Stat. Ind. Technol., Birkhäuser, 2001, p. 215–223. Zbl1017.60025MR1890328
  2. [2] —, « Local limit theorems for partial sums of stationary sequences generated by Gibbs-Markov maps », Stoch. Dyn.1 (2001), p. 193–237. Zbl1039.37002MR1840194
  3. [3] G. Alsmeyer – « On the Harris recurrence of iterated random Lipschitz functions and related convergence rate results », J. Theoret. Probab.16 (2003), p. 217–247. Zbl1022.60067MR1956829
  4. [4] M. Babillot & M. Peigné – « Asymptotic laws for geodesic homology on hyperbolic manifolds with cusps », Bull. Soc. Math. France134 (2006), p. 119–163. Zbl1118.60012MR2233702
  5. [5] V. Baladi – Positive transfer operators and decay of correlations, Advanced Series in Nonlinear Dynamics, vol. 16, World Scientific Publishing Co. Inc., 2000. Zbl1012.37015MR1793194
  6. [6] P. Bálint & S. Gouëzel – « Limit theorems in the stadium billiard », Comm. Math. Phys.263 (2006), p. 461–512. Zbl1170.37314MR2207652
  7. [7] M. Benda – « A central limit theorem for contractive stochastic dynamical systems », J. Appl. Probab.35 (1998), p. 200–205. Zbl0906.60051MR1622456
  8. [8] P. Bertail & S. Clémençon – « Edgeworth expansions of suitably normalized sample mean statistics for atomic Markov chains », Probab. Theory Related Fields130 (2004), p. 388–414. Zbl1075.62075MR2095936
  9. [9] P. Billingsley – Convergence of probability measures, John Wiley & Sons Inc., 1968. Zbl0944.60003MR233396
  10. [10] S. Boatto & F. Golse – « Diffusion approximation of a Knudsen gas model: dependence of the diffusion constant upon the boundary condition », Asymptot. Anal.31 (2002), p. 93–111. Zbl1216.76063MR1938600
  11. [11] E. Bolthausen – « The Berry-Esseén theorem for strongly mixing Harris recurrent Markov chains », Z. Wahrsch. Verw. Gebiete60 (1982), p. 283–289. Zbl0476.60022MR664418
  12. [12] L. Breiman – Probability, Classics in Applied Mathematics, vol. 7, Society for Industrial and Applied Mathematics (SIAM), 1992. Zbl0753.60001MR1163370
  13. [13] A. Broise – « Transformations dilatantes de l’intervalle et théorèmes limites », Astérisque238 (1996), p. 1–109. Zbl0988.37032MR1634271
  14. [14] J.-R. Chazottes & S. Gouëzel – « On almost-sure versions of classical limit theorems for dynamical systems », Probab. Theory Related Fields138 (2007), p. 195–234. Zbl1126.60025MR2288069
  15. [15] X. Chen – « Limit theorems for functionals of ergodic Markov chains with general state space », Mem. Amer. Math. Soc. 139 (1999), p. 203. Zbl0952.60014MR1491814
  16. [16] F. Dal’bo & M. Peigné – « Comportement asymptotique du nombre de géodésiques fermées sur la surface modulaire en courbure non constante », Astérisque238 (1996), p. 111–177. Zbl0924.53032MR1634272
  17. [17] S. Datta & W. P. McCormick – « On the first-order Edgeworth expansion for a Markov chain », J. Multivariate Anal.44 (1993), p. 345–359. Zbl0770.60023MR1219212
  18. [18] J. Dedecker, F. Merlevède & E. Rio – « Rates of convergence for minimal metrics in the central limit theorem under projective criteria », to appear in Electronic Journal of Probability. Zbl1191.60025MR2506123
  19. [19] J. Dedecker & E. Rio – « On mean central limit theorems for stationary sequences », Ann. Inst. Henri Poincaré Probab. Stat.44 (2008), p. 693–726. Zbl1187.60015MR2446294
  20. [20] P. Diaconis & D. Freedman – « Iterated random functions », SIAM Rev.41 (1999), p. 45–76. Zbl0926.60056MR1669737
  21. [21] R. M. Dudley – Real analysis and probability, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, 1989. Zbl0686.60001MR982264
  22. [22] M. Duflo – Random iterative models, Applications of Mathematics (New York), vol. 34, Springer, 1997. Zbl0868.62069MR1485774
  23. [23] N. Dunford & J. T. Schwartz – Linear operators. Part I, Wiley Classics Library, John Wiley & Sons Inc., 1988. Zbl0635.47001MR1009162
  24. [24] R. Durrett – Probability, The Wadsworth & Brooks/Cole Statistics/Probability Series, Wadsworth & Brooks/Cole Advanced Books & Software, 1991. Zbl0709.60002MR1068527
  25. [25] W. Feller – An introduction to probability theory and its applications. Vol. II., Second edition, John Wiley & Sons Inc., 1971. Zbl0138.10207MR270403
  26. [26] C.-D. Fuh & T. L. Lai – « Asymptotic expansions in multidimensional Markov renewal theory and first passage times for Markov random walks », Adv. in Appl. Probab.33 (2001), p. 652–673. Zbl0995.60081MR1860094
  27. [27] M. Gharib – « A uniform estimate for the rate of convergence in the multidimensional central limit theorem for homogeneous Markov chains », Internat. J. Math. Math. Sci.19 (1996), p. 441–450. Zbl0853.60023MR1386542
  28. [28] F. Gong & L. Wu – « Spectral gap of positive operators and applications », J. Math. Pures Appl.85 (2006), p. 151–191. Zbl1097.47006MR2199011
  29. [29] M. I. Gordin & B. A. Lifšic – « Central limit theorem for stationary Markov processes », Dokl. Akad. Nauk SSSR239 (1978), p. 766–767. Zbl0395.60057MR501277
  30. [30] F. Götze & C. Hipp – « Asymptotic expansions for sums of weakly dependent random vectors », Z. Wahrsch. Verw. Gebiete64 (1983), p. 211–239. Zbl0497.60022MR714144
  31. [31] S. Gouëzel – « Central limit theorem and stable laws for intermittent maps », Probab. Theory Related Fields128 (2004), p. 82–122. Zbl1038.37007MR2027296
  32. [32] —, « Necessary and sufficient conditions for limit theorems in Gibbs-Markov maps », preprint, 2008. 
  33. [33] S. Gouëzel & C. Liverani – « Banach spaces adapted to Anosov systems », Ergodic Theory Dynam. Systems26 (2006), p. 189–217. Zbl1088.37010MR2201945
  34. [34] D. Guibourg – « Théorème de renouvellement pour chaînes de Markov fortement ergodiques: application aux modèles itératifs lipschitziens », C. R. Math. Acad. Sci. Paris346 (2008), p. 435–438. Zbl1145.60045MR2417565
  35. [35] D. Guibourg & L. Hervé – « A renewal theorem for strongly ergodic Markov chains in dimension d 3 and in the centered case », preprint, 2009. Zbl1218.60062MR2786705
  36. [36] Y. Guivarc’h – « Application d’un théorème limite local à la transience et à la récurrence de marches de Markov », in Théorie du potentiel (Orsay, 1983), Lecture Notes in Math., vol. 1096, Springer, 1984, p. 301–332. Zbl0562.60074MR890364
  37. [37] Y. Guivarc’h & J. Hardy – « Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d’Anosov », Ann. Inst. H. Poincaré Probab. Statist.24 (1988), p. 73–98. Zbl0649.60041MR937957
  38. [38] Y. Guivarc’h & Y. Le Jan – « Asymptotic winding of the geodesic flow on modular surfaces and continued fractions », Ann. Sci. École Norm. Sup.26 (1993), p. 23–50. Zbl0784.60076MR1209912
  39. [39] Y. Guivarc’h & E. Le Page – « On spectral properties of a family of transfer operators and convergence to stable laws for affine random walks », Ergodic Theory Dynam. Systems28 (2008), p. 423–446. Zbl1154.37306MR2408386
  40. [40] H. Hennion – « Dérivabilité du plus grand exposant caractéristique des produits de matrices aléatoires indépendantes à coefficients positifs », Ann. Inst. H. Poincaré Probab. Statist.27 (1991), p. 27–59. Zbl0724.60009MR1098563
  41. [41] —, « Sur un théorème spectral et son application aux noyaux lipchitziens », Proc. Amer. Math. Soc.118 (1993), p. 627–634. Zbl0772.60049MR1129880
  42. [42] —, « Quasi-compactness and absolutely continuous kernels », Probab. Theory Related Fields139 (2007), p. 451–471. Zbl1128.60061MR2322704
  43. [43] H. Hennion & L. Hervé – Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness, Lecture Notes in Math., vol. 1766, Springer, 2001. Zbl0983.60005MR1862393
  44. [44] —, « Central limit theorems for iterated random Lipschitz mappings », Ann. Probab.32 (2004), p. 1934–1984. Zbl1062.60017MR2073182
  45. [45] —, « Stable laws and products of positive random matrices », J. Theoret. Probab.21 (2008), p. 966–981. Zbl1154.60014MR2443643
  46. [46] L. Hervé – « Théorème local pour chaînes de Markov de probabilité de transition quasi-compacte. Applications aux chaînes V -géométriquement ergodiques et aux modèles itératifs », Ann. Inst. H. Poincaré Probab. Statist.41 (2005), p. 179–196. Zbl1085.60049MR2124640
  47. [47] —, « Vitesse de convergence dans le théorème limite central pour des chaînes de Markov fortement ergodiques », Ann. Inst. Henri Poincaré Probab. Stat.44 (2008), p. 280–292. Zbl1178.60051MR2446324
  48. [48] L. Hervé, J. Ledoux & V. Patilea – « A Berry-Esseen theorem on M -estimators for geometrically ergodic Markov chains », preprint, 2009. Zbl1279.60089MR2922467
  49. [49] C. T. Ionescu Tulcea & G. Marinescu – « Théorie ergodique pour des classes d’opérations non complètement continues », Ann. of Math.52 (1950), p. 140–147. Zbl0040.06502MR37469
  50. [50] C. Jan – « Vitesse de convergence dans le TCL pour des processus associés à des systèmes dynamiques et aux produits de matrices aléatoires », Thèse, I.R.M.A.R, Université de Rennes I, 2001. 
  51. [51] J. L. Jensen – « Asymptotic expansions for strongly mixing Harris recurrent Markov chains », Scand. J. Statist.16 (1989), p. 47–63. Zbl0674.60067MR1003968
  52. [52] G. L. Jones – « On the Markov chain central limit theorem », Probab. Surv.1 (2004), p. 299–320. Zbl1189.60129MR2068475
  53. [53] V. V. Jurinskiĭ – « A smoothing inequality for estimates of the Lévy-Prohorov distance », Teor. Verojatnost. i Primenen.20 (1975), p. 3–12. Zbl0351.60007MR370697
  54. [54] G. Keller & C. Liverani – « Stability of the spectrum for transfer operators », Ann. Scuola Norm. Sup. Pisa Cl. Sci.28 (1999), p. 141–152. Zbl0956.37003MR1679080
  55. [55] I. Kontoyiannis & S. P. Meyn – « Spectral theory and limit theorems for geometrically ergodic Markov processes », Ann. Appl. Probab.13 (2003), p. 304–362. Zbl1016.60066MR1952001
  56. [56] E. Le Page – « Théorèmes limites pour les produits de matrices aléatoires », in Probability measures on groups (Oberwolfach, 1981), Lecture Notes in Math., vol. 928, Springer, 1982, p. 258–303. Zbl0506.60019MR669072
  57. [57] —, « Théorèmes de renouvellement pour les produits de matrices aléatoires. Équations aux différences aléatoires », in Séminaires de probabilités Rennes 1983, Publ. Sém. Math., Univ. Rennes I, 1983. 
  58. [58] —, « Régularité du plus grand exposant caractéristique des produits de matrices aléatoires indépendantes et applications », Ann. Inst. H. Poincaré Probab. Statist.25 (1989), p. 109–142. Zbl0679.60010MR1001021
  59. [59] C. Liverani – « Invariant measures and their properties. A functional analytic point of view », in Dynamical systems. Part II, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., 2003, p. 185–237. Zbl1066.37013MR2071241
  60. [60] V. K. Malinovskiĭ – « Limit theorems for Harris Markov chains. I », Teor. Veroyatnost. i Primenen.31 (1986), p. 315–332. Zbl0607.60052MR850991
  61. [61] S. P. Meyn & R. L. Tweedie – Markov chains and stochastic stability, Communications and Control Engineering Series, Springer London Ltd., 1993. Zbl0925.60001MR1287609
  62. [62] X. Milhaud & A. Raugi – « Étude de l’estimateur du maximum de vraisemblance dans le cas d’un processus autorégressif: convergence, normalité asymptotique, vitesse de convergence », Ann. Inst. H. Poincaré Probab. Statist.25 (1989), p. 383–428. Zbl0714.60014MR1045243
  63. [63] S. V. Nagaev – « Some limit theorems for stationary Markov chains », Teor. Veroyatnost. i Primenen.2 (1957), p. 389–416. Zbl0078.31804MR94846
  64. [64] —, « More exact limit theorems for homogeneous Markov chains », Teor. Verojatnost. i Primenen.6 (1961), p. 67–86. Zbl0116.10602MR131291
  65. [65] M. Peigné – « Iterated function systems and spectral decomposition of the associated Markov operator », in Fascicule de probabilités, Publ. Inst. Rech. Math. Rennes, vol. 1993, Univ. Rennes I, 1993. MR1347702
  66. [66] F. Pène – « Rate of convergence in the multidimensional central limit theorem for stationary processes. Application to the Knudsen gas and to the Sinai billiard », Ann. Appl. Probab.15 (2005), p. 2331–2392. Zbl1097.37030MR2187297
  67. [67] F. Räbiger & M. P. H. Wolff – « On the approximation of positive operators and the behaviour of the spectra of the approximants », Integral Equations Operator Theory28 (1997), p. 72–86. Zbl0901.47009MR1446832
  68. [68] M. Rosenblatt – Markov processes. Structure and asymptotic behavior, Grundl. math. Wiss., vol. 184, Springer, 1971. Zbl0236.60002MR329037
  69. [69] V. I. Rotar – « A non-uniform estimate for the convergence speed in the multidimensional central theorem », Theory Prob. Applications15 (1970), p. 630–648. Zbl0236.60024
  70. [70] J. Rousseau-Egele – « Un théorème de la limite locale pour une classe de transformations dilatantes et monotones par morceaux », Ann. Probab.11 (1983), p. 772–788. Zbl0518.60033MR704569
  71. [71] M. Séva – « On the local limit theorem for non-uniformly ergodic Markov chains », J. Appl. Probab.32 (1995), p. 52–62. Zbl0822.60062MR1316793
  72. [72] L. Wu – « Essential spectral radius for Markov semigroups. I. Discrete time case », Probab. Theory Related Fields128 (2004), p. 255–321. Zbl1056.60068MR2031227

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.