Rough paths via sewing Lemma
ESAIM: Probability and Statistics (2012)
- Volume: 16, page 479-526
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topCoutin, Laure. "Rough paths via sewing Lemma." ESAIM: Probability and Statistics 16 (2012): 479-526. <http://eudml.org/doc/273611>.
@article{Coutin2012,
abstract = {We present the rough path theory introduced by Lyons, using the swewing lemma of Feyel and de Lapradelle.},
author = {Coutin, Laure},
journal = {ESAIM: Probability and Statistics},
keywords = {rough paths; differential equations; rough path theory; -variation; stochastic differential equations; -Hölder continuity},
language = {eng},
pages = {479-526},
publisher = {EDP-Sciences},
title = {Rough paths via sewing Lemma},
url = {http://eudml.org/doc/273611},
volume = {16},
year = {2012},
}
TY - JOUR
AU - Coutin, Laure
TI - Rough paths via sewing Lemma
JO - ESAIM: Probability and Statistics
PY - 2012
PB - EDP-Sciences
VL - 16
SP - 479
EP - 526
AB - We present the rough path theory introduced by Lyons, using the swewing lemma of Feyel and de Lapradelle.
LA - eng
KW - rough paths; differential equations; rough path theory; -variation; stochastic differential equations; -Hölder continuity
UR - http://eudml.org/doc/273611
ER -
References
top- [1] F. Baudoin, An introduction to the geometry of stochastic lows. Imperial Press College, London (2004). Zbl1085.60002MR2154760
- [2] J. Bertoin, Sur une intégrale pour les processus à α-variation bornée. Ann. Probab.17 (1999) 1521–1535. Zbl0687.60054MR1048943
- [3] K.-T. Chen, Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula. Ann. Math.65 (1957) 163–178. Zbl0077.25301MR85251
- [4] K.-T. Chen, Integration of paths; a faithful representation of paths by non-commutative formal power series. Trans. Amer. Math Soc.89 (1958) 395-407. Zbl0097.25803MR106258
- [5] K.-T. Chen, Integration of paths, Bull. Amer. Math. Soc.83 (1977) 831–879. Zbl0389.58001MR454968
- [6] Z. Ciesielski, G. Kerkyacharian and B. Roynette, Quelques espaces fonctionnels associés à des processus gaussiens. Studia Math.107 (1993) 171–204. Zbl0809.60004MR1244574
- [7] L. Coutin and Z. Qian, Stochastic analysis, rough path analysis and fractional Brownian motions. Probab. Theory Related Fields122 (2002) 108–140. Zbl1047.60029MR1883719
- [8] L. Coutin and N. Victoir, Enhanced Gaussian processes and applications. ESAIM Probab. Stat.13 (2009) 247–260. Zbl1181.60057MR2528082
- [9] A.M. Davie, Differential equations driven by rough paths : an approach via discrete approximation. Appl. Math. Res. Express. AMRX 2 (2007) abm009, 40. Zbl1163.34005MR2387018
- [10] A.M. Davie, Uniqueness of solutions of stochastic differential equations. Int. Math. Res. Not. IMRN 24 (2007) rnm124, 26. Zbl1139.60028MR2377011
- [11] H. Doss, Liens entre équations différentielles stochastiques et ordinaires. Ann. Inst. Henri Poincaré Sect. B (N.S.) 13 (1977) 99–125. Zbl0359.60087MR451404
- [12] D. Feyel and A. de La Pradelle, Curvilinear integrals along enriched paths. Electron. J. Probab. 11 (2006) 860–892 (electronic). Zbl1110.60031MR2261056
- [13] P. Friz and N. Victoir, Multidimensional Stochastic Processes as Rough Paths. Theory and Applications. Cambridge University Press (2008). Zbl1193.60053MR2604669
- [14] P. Friz and N. Victoir, Differential equations driven by Gaussian signals. Ann. Inst. Henri Poincaré Probab. Stat.46 (2010) 369–413. Zbl1202.60058MR2667703
- [15] M. Gubinelli, Controlling rough paths. J. Funct. Anal.216 (2004) 86–140. Zbl1058.60037MR2091358
- [16] Y. Hu and D. Nualart, Rough path analysis via fractional calculus. Trans. Amer. Math. Soc.361 (2009) 2689–2718. Zbl1175.60061MR2471936
- [17] Y. Inahama and H. Kawabi, Asymptotic expansions for the Laplace approximations for Itô functionals of Brownian rough paths. J. Funct. Anal.243 (2007) 270–322. Zbl1114.60062MR2291439
- [18] A. Lejay, An introduction to rough paths. Séminaire de probabilités, XXXVII 1832 (2003) 1–59. Zbl1041.60051MR2053040
- [19] A. Lejay, Yet another introduction to rough paths. Séminaire de Probabilités, Lect. Notes in Maths XLII (2009) 1–101. Zbl1198.60002MR2599204
- [20] A. Lejay, On rough differential equations. Electron. J. Probab.14 (2009) 341–364. Zbl1190.60044MR2480544
- [21] T. Lyons, Differential equations driven by rough signals. I. An extension of an inequality of L.C. Young. Math. Res. Lett.1 (1994) 451–464. Zbl0835.34004MR1302388
- [22] T.J. Lyons, Differential equations driven by rough signals. Rev. Mat. Iberoamericana14 (1998) 215–310. Zbl0923.34056MR1654527
- [23] T. Lyons and Zhongmin Qian, System control and rough paths. Oxford Mathematical Monographs. Oxford University Press, Oxford, Oxford Science Publications (2002). Zbl1029.93001MR2036784
- [24] T. Lyons, M. Caruana and T. Lévy, Differential equations driven by rough paths Ecole d’été de probabilités de Saint-Flour XXXIV (2004), Lectures Notes in Math 1908. J. Picard Ed., Springer, Berlin (2007). Zbl1176.60002MR2314753
- [25] I. Nourdin, A simple theory for the study of SDEs driven by a fractional Brownian motion, in dimension one, in Séminaire de probabilités XLI, Lecture Notes in Math. 1934. Springer, Berlin (2008) 181–197. Zbl1148.60034MR2483731
- [26] D. Nualart and A. Răşcanu, Differential equations driven by fractional Brownian motion. Collect. Math.53 (2002) 55–81. Zbl1018.60057
- [27] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional integrals and derivatives. Gordon and Breach Science Publishers, Yverdon (1993). Theory and applications, Edited and with a foreword by S.M. Nikolski Ed., Translated from the 1987 Russian original, Revised by the authors. Zbl0818.26003MR1347689
- [28] E.M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series 30. Princeton University Press, Princeton, N.J. (1970). Zbl0207.13501MR290095
- [29] H. Sussmann, On the gap between deterministic and stochastic ordinary differential equations. Ann. Probab.6 (1978) 19–41. Zbl0391.60056MR461664
- [30] A. Tychonoff, Ein Fixpunktsatz. Math. Ann.111 (1935) 767–776. Zbl0012.30803MR1513031
- [31] L.C. Young, An inequality of the Hölder type, connected with Stieltjes integration. Acta Math.67 (1936) 251–282. Zbl0016.10404MR1555421
- [32] M. Zähle, On the link between fractional and stochastic calculus, in Stochastic dynamics, Bremen (1997), Springer, New York (1999) 305–325. Zbl0947.60060MR1678495
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.