Some classical function theory theorems and their modern versions

J. L. Doob

Annales de l'institut Fourier (1965)

  • Volume: 15, Issue: 1, page 113-135
  • ISSN: 0373-0956

How to cite

top

Doob, J. L.. "Some classical function theory theorems and their modern versions." Annales de l'institut Fourier 15.1 (1965): 113-135. <http://eudml.org/doc/73856>.

@article{Doob1965,
author = {Doob, J. L.},
journal = {Annales de l'institut Fourier},
keywords = {complex functions},
language = {eng},
number = {1},
pages = {113-135},
publisher = {Association des Annales de l'Institut Fourier},
title = {Some classical function theory theorems and their modern versions},
url = {http://eudml.org/doc/73856},
volume = {15},
year = {1965},
}

TY - JOUR
AU - Doob, J. L.
TI - Some classical function theory theorems and their modern versions
JO - Annales de l'institut Fourier
PY - 1965
PB - Association des Annales de l'Institut Fourier
VL - 15
IS - 1
SP - 113
EP - 135
LA - eng
KW - complex functions
UR - http://eudml.org/doc/73856
ER -

References

top
  1. [1] M. BRELOT, Etude générale des fonctions harmoniques ou surharmoniques positives au voisinage d'un point-frontière irrégulier, Annales de l'Université de Grenoble, 22 (1946), 201-219. Zbl0061.22805MR8,581d
  2. [2] M. BRELOT and J. L. DOOB, Limites angulaires et limites fines, Annales de l'Institut Fourier, 13 (1963), 395-413. Zbl0132.33902MR33 #4299
  3. [3] L. CARLESON, On the existence of boundary values for harmonic functions in several variables, Arkiv for matematik, 4 (1961), 393-399. Zbl0107.08402MR28 #2232
  4. [4] C. CONSTANTINESCU and C. CORNEA, Ideale Ränder Riemannscher Flächen, Ergebnisse der Mathematik, Springer, 1963. Zbl0112.30801
  5. [5] J. L. DOOB, Stochastic Processes, New York, 1953. Zbl0053.26802MR15,445b
  6. [6] J. L. DOOB, A non-probabilistic proof of the relative Fatou theorem, Annales de l'Institut Fourier, 9 (1959), 293-300. Zbl0095.08203MR22 #8233
  7. [7] J. L. DOOB, Conformally invariant cluster value theory, Illinois J. Math., 5 (1961), 521-549. Zbl0196.42201MR32 #4276
  8. [8] KOHUR GOWRISANKARAN, Extreme harmonic functions and boundary value problems, Annales de l'Institut Fourier, 13 (1963). Zbl0134.09503MR29 #1350
  9. [9] G. H. HARDY and J. E. Littlewood, A maximal theorem with function theoretic applications, Acta Math., 54 (1930), 81-116. Zbl56.0264.02JFM56.0264.02
  10. [10] Mlle. L. NAÏM, Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel, Annales de l'Institut Fourier, 7 (1957), 183-285. Zbl0086.30603MR20 #6608
  11. [11] H. E. RAUCH, Harmonic and analytic functions of several variables and the maximal theorem of Hardy and Littlewood, Canadian J. Math., 8 (1956), 171-183. Zbl0072.07901MR19,261d
  12. [12] K. T. SMITH, A generalization of an inequality of Hardy and Littlewood, Canadian J. Math., 8 (1956), 157-170. Zbl0071.05502MR19,261e
  13. [13] A. ZYGMUND, Trigonometric Series, sec. ed., Cambridge, 1959. Zbl0085.05601

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.