Some classical function theory theorems and their modern versions
Annales de l'institut Fourier (1965)
- Volume: 15, Issue: 1, page 113-135
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDoob, J. L.. "Some classical function theory theorems and their modern versions." Annales de l'institut Fourier 15.1 (1965): 113-135. <http://eudml.org/doc/73856>.
@article{Doob1965,
author = {Doob, J. L.},
journal = {Annales de l'institut Fourier},
keywords = {complex functions},
language = {eng},
number = {1},
pages = {113-135},
publisher = {Association des Annales de l'Institut Fourier},
title = {Some classical function theory theorems and their modern versions},
url = {http://eudml.org/doc/73856},
volume = {15},
year = {1965},
}
TY - JOUR
AU - Doob, J. L.
TI - Some classical function theory theorems and their modern versions
JO - Annales de l'institut Fourier
PY - 1965
PB - Association des Annales de l'Institut Fourier
VL - 15
IS - 1
SP - 113
EP - 135
LA - eng
KW - complex functions
UR - http://eudml.org/doc/73856
ER -
References
top- [1] M. BRELOT, Etude générale des fonctions harmoniques ou surharmoniques positives au voisinage d'un point-frontière irrégulier, Annales de l'Université de Grenoble, 22 (1946), 201-219. Zbl0061.22805MR8,581d
- [2] M. BRELOT and J. L. DOOB, Limites angulaires et limites fines, Annales de l'Institut Fourier, 13 (1963), 395-413. Zbl0132.33902MR33 #4299
- [3] L. CARLESON, On the existence of boundary values for harmonic functions in several variables, Arkiv for matematik, 4 (1961), 393-399. Zbl0107.08402MR28 #2232
- [4] C. CONSTANTINESCU and C. CORNEA, Ideale Ränder Riemannscher Flächen, Ergebnisse der Mathematik, Springer, 1963. Zbl0112.30801
- [5] J. L. DOOB, Stochastic Processes, New York, 1953. Zbl0053.26802MR15,445b
- [6] J. L. DOOB, A non-probabilistic proof of the relative Fatou theorem, Annales de l'Institut Fourier, 9 (1959), 293-300. Zbl0095.08203MR22 #8233
- [7] J. L. DOOB, Conformally invariant cluster value theory, Illinois J. Math., 5 (1961), 521-549. Zbl0196.42201MR32 #4276
- [8] KOHUR GOWRISANKARAN, Extreme harmonic functions and boundary value problems, Annales de l'Institut Fourier, 13 (1963). Zbl0134.09503MR29 #1350
- [9] G. H. HARDY and J. E. Littlewood, A maximal theorem with function theoretic applications, Acta Math., 54 (1930), 81-116. Zbl56.0264.02JFM56.0264.02
- [10] Mlle. L. NAÏM, Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel, Annales de l'Institut Fourier, 7 (1957), 183-285. Zbl0086.30603MR20 #6608
- [11] H. E. RAUCH, Harmonic and analytic functions of several variables and the maximal theorem of Hardy and Littlewood, Canadian J. Math., 8 (1956), 171-183. Zbl0072.07901MR19,261d
- [12] K. T. SMITH, A generalization of an inequality of Hardy and Littlewood, Canadian J. Math., 8 (1956), 157-170. Zbl0071.05502MR19,261e
- [13] A. ZYGMUND, Trigonometric Series, sec. ed., Cambridge, 1959. Zbl0085.05601
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.