Uniform approximation of harmonic functions
Annales de l'institut Fourier (1969)
- Volume: 19, Issue: 2, page 339-353
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topVincent-Smith, G. F.. "Uniform approximation of harmonic functions." Annales de l'institut Fourier 19.2 (1969): 339-353. <http://eudml.org/doc/73992>.
@article{Vincent1969,
abstract = {Let $\omega $ be an open relatively compact weakly determining subset of a locally compact harmonic space in the axiomatic of Boboc-Constantinescu-Cornea. If $f$ is continuous on $\overline\{\omega \}$ and harmonic in $\omega $ the $f$ may be uniformly approximated on $\overline\{\omega \}$ to within $\varepsilon $ by a function harmonic in an open set containing $\overline\{\omega \}$. The proof uses an extension of the Weierstrass-Stone theorem to geometric simplexes.},
author = {Vincent-Smith, G. F.},
journal = {Annales de l'institut Fourier},
keywords = {partial differential equations},
language = {eng},
number = {2},
pages = {339-353},
publisher = {Association des Annales de l'Institut Fourier},
title = {Uniform approximation of harmonic functions},
url = {http://eudml.org/doc/73992},
volume = {19},
year = {1969},
}
TY - JOUR
AU - Vincent-Smith, G. F.
TI - Uniform approximation of harmonic functions
JO - Annales de l'institut Fourier
PY - 1969
PB - Association des Annales de l'Institut Fourier
VL - 19
IS - 2
SP - 339
EP - 353
AB - Let $\omega $ be an open relatively compact weakly determining subset of a locally compact harmonic space in the axiomatic of Boboc-Constantinescu-Cornea. If $f$ is continuous on $\overline{\omega }$ and harmonic in $\omega $ the $f$ may be uniformly approximated on $\overline{\omega }$ to within $\varepsilon $ by a function harmonic in an open set containing $\overline{\omega }$. The proof uses an extension of the Weierstrass-Stone theorem to geometric simplexes.
LA - eng
KW - partial differential equations
UR - http://eudml.org/doc/73992
ER -
References
top- [1] H. BAUER, Frontière de Šilov et problème de Dirichlet, Sem. Brelot Choquet Deny, 3e année, (1958-1959).
- [2] H. BAUER, Minimalstellen von Functionen und Extremalpunkt II, Archiv der Math. 11, (1960), 200-203. Zbl0098.08003MR24 #A251
- [3] H. BAUER, Axiomatische Behandlung des Dirichletschen Problem fur elliptische und parabolische Differentialgleichungen, Math. Ann., 146 (1962) 1-59. Zbl0107.08003MR26 #1612
- [4] N. BOBOC, C. CONSTANTINESCU and A. CORNEA, Axiomatic theory of harmonic functions. Non negative superharmonic functions, Ann. Inst. Fourier, Grenoble, 15 (1965) 283-312. Zbl0139.06604MR32 #2603
- [5] N. BOBOC, and A. CORNEA, Convex cones of lower semicontinuous functions, Rev. Roum. Math. Pures et Appl. 13 (1967) 471-525. Zbl0155.17301MR35 #7113
- [6] M. BRELOT, Sur l'approximation et la convergence dans la théorie des fonctions harmoniques ou holomorphes, Bull. Soc. Math. France, 73 (1945) 55-70. Zbl0061.22804MR7,205a
- [7] M. BRELOT, Éléments de la théorie classique du potential, 2e éd. (1961) Centre de documentation universitaire, Paris.
- [8] M. BRELOT, Axiomatique des fonctions harmoniques, Séminaire de mathématiques supérieures, Montréal (1965).
- [9] J. DENY, Sur l'approximation des fonctions harmoniques, Bull. Soc. Math. France, 73 (1945) 71-73. Zbl0063.01088MR7,205b
- [10] J. DENY, Systèmes totaux de fonctions harmoniques, Ann. Inst. Fourier, Grenoble, 1 (1949) 103-113.
- [11] D. A. EDWARDS, Minimum-stable wedges of semicontinuous functions, Math. Scand. 19 (1966) 15-26. Zbl0146.37002MR35 #5907
- [12] D. A. EDWARDS, On uniform approximation of affine functions on a compact convex set, Quart J. Math. Oxford (2), 20 (1969), 139-42. Zbl0177.16303MR40 #3285
- [13] D. A. EDWARDS and G. F. VINCENT-SMITH, A Weierstrass-Stone theorem for Choquet simplexes, Ann. Inst. Fourier, Grenoble, 18 (1968) 261-282. Zbl0172.15604MR39 #6060
- [14] R. M. HERVÉ, Développements sur une théorie axiomatique des fonctions surharmoniques, C.R. Acad. Sci. Paris, 248 (1959) 179-181. Zbl0096.30401MR21 #5097
- [15] R. R. PHELPS, Lectures on Choquet's theorem, van Nostrand, Princeton N. J. (1966). Zbl0135.36203MR33 #1690
- [16] A. de la PRADELLE, Approximation et caractère de quasi-analyticité dans la théorie axiomatique des fonctions harmoniques, Ann. Inst. Fourier, Grenoble, 17 (1967) 383-399. Zbl0153.15501MR37 #3040
Citations in EuDML Documents
top- Arnaud de La Pradelle, Approximation des fonctions harmoniques à l'aide d'un théorème de G. F. Vincent-Smith
- Gilles Tissier, Quasi-analyticité et approximation sur la frontière d'un ouvert quelconque, dans la théorie axiomatique des fonctions harmoniques
- Denis Feyel, A. de La Pradelle, Principe du minimum et préfaisceaux maximaux
- A. de La Pradelle, À propos du mémoire de Vincent-Smith sur l'approximation des fonctions harmoniques
- Ian Reay, Subduals and tensor products of spaces of harmonic functions
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.