Calcul exponentiel des opérateurs microdifférentiels d'ordre infini. I

Takashi Aoki

Annales de l'institut Fourier (1983)

  • Volume: 33, Issue: 4, page 227-250
  • ISSN: 0373-0956

Abstract

top
This paper is concerned with the symbol calculus of microdifferential operators with exponential symbols. The composition law of exponential symbols is given. As an application, we find a sufficient condition of ellipticity for microdifferential operators of infinite order.

How to cite

top

Aoki, Takashi. "Calcul exponentiel des opérateurs microdifférentiels d'ordre infini. I." Annales de l'institut Fourier 33.4 (1983): 227-250. <http://eudml.org/doc/74609>.

@article{Aoki1983,
abstract = {Cet article s’intéresse au calcul symbolique des opérateurs microdifférentiels avec symboles exponentiels. On donne la loi de composition des symboles exponentiels. Comme application, on trouve une condition suffisante d’ellipticité pour les opérateurs microdifférentiels d’ordre infini.},
author = {Aoki, Takashi},
journal = {Annales de l'institut Fourier},
keywords = {symbol calculus of microdifferential operators with exponential symbols; invertibility for microdifferential operators of infinite order},
language = {fre},
number = {4},
pages = {227-250},
publisher = {Association des Annales de l'Institut Fourier},
title = {Calcul exponentiel des opérateurs microdifférentiels d'ordre infini. I},
url = {http://eudml.org/doc/74609},
volume = {33},
year = {1983},
}

TY - JOUR
AU - Aoki, Takashi
TI - Calcul exponentiel des opérateurs microdifférentiels d'ordre infini. I
JO - Annales de l'institut Fourier
PY - 1983
PB - Association des Annales de l'Institut Fourier
VL - 33
IS - 4
SP - 227
EP - 250
AB - Cet article s’intéresse au calcul symbolique des opérateurs microdifférentiels avec symboles exponentiels. On donne la loi de composition des symboles exponentiels. Comme application, on trouve une condition suffisante d’ellipticité pour les opérateurs microdifférentiels d’ordre infini.
LA - fre
KW - symbol calculus of microdifferential operators with exponential symbols; invertibility for microdifferential operators of infinite order
UR - http://eudml.org/doc/74609
ER -

References

top
  1. [1] T. AOKI, Growth order of microdifferential operators of infinite order, J. Fac. Sci., Univ. Tokyo, Sec. IA, 29 (1982), 143-159. Zbl0489.35080MR84a:58072
  2. [2] T. AOKI, Invertibility for microdifferential operators of infinite order, Publ. RIMS, Kyoto Univ., 18 (1982), 421-449. Zbl0512.35077MR84c:58079
  3. [3] T. AOKI, The exponential calculus of microdifferential operators of infinite order I, Proc. Japan Acad., 58A (1982), 58-61. Zbl0507.58039MR83e:58082
  4. [4] T. AOKI, The exponential calculus of microdifferential operators of infinite order II, Proc. Japan, Acad., 58A (1982), 154-157. Zbl0507.58039MR83k:58077
  5. [5] L. BOUTET DE MONVEL, Opérateurs pseudo-différentiels analytiques et opérateurs d'ordre infini, Ann. Inst. Fourier, Grenoble, 22, 3 (1972), 229-268. Zbl0235.47029MR49 #5939
  6. [6] L. BOUTET DE MONVEL, Opérateurs pseudo-différentiels analytiques d'ordre infini, Astérisque, 2-3 (1973), 128-134. Zbl0273.35057
  7. [7] L. EHRENPREIS and T. KAWAI, Poisson's summation formula and Hamburger's theorem, Publ. RIMS, Kyoto Univ., 18 (1982), 833-846. Zbl0499.10042MR84h:46049
  8. [8] L. HÖRMANDER, Fourier integral operators I, Acta Math., 127 (1971), 79-183. Zbl0212.46601MR52 #9299
  9. [9] M. KASHIWARA, Systèmes d'équations micro-différentielles, Cours rédigé par Teresa Monteiro-Fernandes, Prépublications mathématiques de l'Université de Paris-Nord, 1977. 
  10. [10] M. KASHIWARA and T. KAWAI, Micro-hyperbolic pseudo-differential operators I, J. Math. Soc. Japan, 27 (1975), 359-404. Zbl0305.35066MR51 #14167
  11. [11] M. KASHIWARA and T. KAWAI, Second-microlocalization and asymptotic expansions, Lect. Notes in Phys., Springer, No. 126 (1980), 21-76. Zbl0458.46027MR81i:58038
  12. [12] M. KASHIWARA and T. KAWAI. On holonomic systems of micro-differential equations III, Publ. RIMS, Kyoto Univ., 17 (1981), 813-979. Zbl0505.58033MR83e:58085
  13. [13] M. KASHIWARA and P. SCHAPIRA, Problème de Cauchy pour les systèmes microdifférentiels dans le domaine complexe, Inventiones Math., 46 (1978), 17-38. Zbl0369.35061MR80a:58031
  14. [14] M. KASHIWARA and P. SCHAPIRA, Micro-hyperbolic systems, Acta Math., 142 (1979), 1-55. Zbl0413.35049MR80b:58060
  15. [15] K. KATAOKA, On the theory of Radon transformations of hyperfunctions, Master's thesis in Univ. Tokyo, 1976 (en japonais). 
  16. [16] K. KATAOKA, On the theory of Radon transformations of hyperfunctions, J. Fac. Sci., Univ. Tokyo, Sec. IA, 28 (1981), 331-413. Zbl0576.32008MR84e:58067
  17. [17] T. KAWAI, On the theory of Fourier hyperfunctions and its applications to partial differential equations with constant coefficients, J. Fac. Sci. Univ. Tokyo, 17 (1970), 467-517. Zbl0212.46101MR45 #7252
  18. [18] Y. LAURENT. Deuxième microlocalisation, Lect. Notes in Phys., Springer, No. 126 (1980), 77-89. Zbl0466.35003MR81j:58071
  19. [19] M. SATO, Pseudo-differential equations and theta functions, Astérisque, 2-3 (1973), 286-291. Zbl0288.35045MR57 #7701
  20. [20] M. SATO, M. KASHIWARA and T. KAWAI, Linear differential equations of infinite order and theta functions, Advances in Math., 47 (1983), 300-325. Zbl0546.35047MR84h:14054
  21. [21] M. SATO, T. KAWAI and M. KASHIWARA, Microfunctions and pseudo-differential equations, Lect. Notes in Math., Springer, No. 287 (1973), 265-529. Zbl0277.46039MR54 #8747
  22. [22] K. UCHIKOSHI, Microlocal analysis of partial differential operators with irregular singularities, à paraître. Zbl0556.35017

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.