On p -adic L -functions of G L ( 2 ) × G L ( 2 ) over totally real fields

Haruzo Hida

Annales de l'institut Fourier (1991)

  • Volume: 41, Issue: 2, page 311-391
  • ISSN: 0373-0956

Abstract

top
Let D ( s , f , g ) be the Rankin product L -function for two Hilbert cusp forms f and g . This L -function is in fact the standard L -function of an automorphic representation of the algebraic group G L ( 2 ) × G L ( 2 ) defined over a totally real field. Under the ordinarity assumption at a given prime p for f and g , we shall construct a p -adic analytic function of several variables which interpolates the algebraic part of D ( m , f , g ) for critical integers m , regarding all the ingredients m , f and g as variables.

How to cite

top

Hida, Haruzo. "On $p$-adic $L$-functions of $GL(2)\times GL(2)$ over totally real fields." Annales de l'institut Fourier 41.2 (1991): 311-391. <http://eudml.org/doc/74922>.

@article{Hida1991,
abstract = {Let $D(s,f,g)$ be the Rankin product $L$-function for two Hilbert cusp forms $f$ and $g$. This $L$-function is in fact the standard $L$-function of an automorphic representation of the algebraic group $GL(2)\times GL(2)$ defined over a totally real field. Under the ordinarity assumption at a given prime $p$ for $f$ and $g$, we shall construct a $p$-adic analytic function of several variables which interpolates the algebraic part of $D(m,f,g)$ for critical integers $m$, regarding all the ingredients $m$, $f$ and $g$ as variables.},
author = {Hida, Haruzo},
journal = {Annales de l'institut Fourier},
keywords = {interpolation; Rankin product -function; Hilbert cusp forms; automorphic representation; -adic analytic function},
language = {eng},
number = {2},
pages = {311-391},
publisher = {Association des Annales de l'Institut Fourier},
title = {On $p$-adic $L$-functions of $GL(2)\times GL(2)$ over totally real fields},
url = {http://eudml.org/doc/74922},
volume = {41},
year = {1991},
}

TY - JOUR
AU - Hida, Haruzo
TI - On $p$-adic $L$-functions of $GL(2)\times GL(2)$ over totally real fields
JO - Annales de l'institut Fourier
PY - 1991
PB - Association des Annales de l'Institut Fourier
VL - 41
IS - 2
SP - 311
EP - 391
AB - Let $D(s,f,g)$ be the Rankin product $L$-function for two Hilbert cusp forms $f$ and $g$. This $L$-function is in fact the standard $L$-function of an automorphic representation of the algebraic group $GL(2)\times GL(2)$ defined over a totally real field. Under the ordinarity assumption at a given prime $p$ for $f$ and $g$, we shall construct a $p$-adic analytic function of several variables which interpolates the algebraic part of $D(m,f,g)$ for critical integers $m$, regarding all the ingredients $m$, $f$ and $g$ as variables.
LA - eng
KW - interpolation; Rankin product -function; Hilbert cusp forms; automorphic representation; -adic analytic function
UR - http://eudml.org/doc/74922
ER -

References

top
  1. [B1] N. BOURBAKI, Algèbre, Hermann, Paris, 1970. 
  2. [B2] N. BOURBAKI, Algèbre commutative, Hermann, Paris, 1961. 
  3. [BR] D. BLASIUS and J. D. ROGAWSKI, Galois representations for Hilbert modular forms, Bull. A.M.S., (1) 21 (1989), 65-69. Zbl0684.12013MR90b:11046
  4. [C] W. CASSELMAN, On some results of Atkin and Lehner, Math. Ann., 201 (1973), 301-314. Zbl0239.10015MR49 #2558
  5. [Co] J. COATES, Motivic p-adic L-functions, Proceedings of the Durham Symposium, July, 1989, LMS Lecture Note Series, 153 (1991), 141-172. Zbl0725.11029MR93b:11082
  6. [Co1] P. COLMEZ, Résidu en s = 1 des fonctions zêta p-adiques, Inventiones Math., 91 (1988), 371-389. Zbl0651.12010MR89d:11104
  7. [D] P. DELIGNE, Valeurs de fonctions L et périodes d'intégrales, Proc. Symp. Pure Math., 33 (1979), part. 2, 313-346. Zbl0449.10022MR81d:12009
  8. [H1] H. HIDA, On p-adic Hecke algebras for GL2 over totally real fields, Ann. of Math., 128 (1988), 295-384. Zbl0658.10034MR89m:11046
  9. [H2] H. HIDA, On nearly ordinary Hecke algebras for GL(2) over totally real fields, Adv. Studies in Pure Math., 17 (1989), 139-169. Zbl0742.11026MR92f:11064
  10. [H3] H. HIDA, A p-adic measure attached to the zeta functions associated with two elliptic modular forms II, Ann. l'Institut Fourier, 38-3 (1988), 1-83. Zbl0645.10028MR89k:11120
  11. [H4] H. HIDA, A p-adic measure attached to the zeta functions associated with two elliptic modular forms I, Inventiones Math., 79 (1985), 159-195. Zbl0573.10020MR86m:11097
  12. [H5] H. HIDA, Nearly ordinary Hecke algebras and Galois representations of several variables, JAMI Inaugural Conference Proceedings, 1988 May, Baltimore, Supplement of Amer. J. Math., (1990), 115-134. Zbl0782.11017MR2000e:11144
  13. [H6] H. HIDA, Modules of congruence of Hecke algebras and L-functions associated with cusp forms, Amer. J. Math., 110 (1988), 323-382. Zbl0645.10029MR89i:11058
  14. [H7] H. HIDA, Le produit de Petersson et de Rankin p-adique, Sém. Théorie des Nombres, 1988-1989, 87-102. Zbl0721.11024MR92i:11057
  15. [H8] H. HIDA, Algebraicity theorems for standard L-functions of GL(2) and GL(2) × GL(2), preprint. 
  16. [HT1] H. HIDA and J. TILOUINE, Katz p-adic L-functions, congruence modules and deformation of Galois representations, Proceedings of the Durham Symposium, July, 1989, LMS Lecture Note Series, 153 (1991), 271-293. Zbl0739.11022MR93c:11027
  17. [HT2] H. HIDA and J. TILOUINE, Anti-cyclotomic Katz p-adic L-functions and congruence modules, preprint. Zbl0778.11061
  18. [HT3] H. HIDA and J. TILOUINE, On the anticyclotomic main conjecture for CM fields, preprint. Zbl0819.11047
  19. [J] H. JACQUET, Automorphic forms on GL(2), II, Lecture notes in Math., 278 (1972), Springer. Zbl0243.12005MR58 #27778
  20. [K] N. M. KATZ, p-adic L-functions for CM fields, Inventiones Math., 49 (1978), 199-297. Zbl0417.12003MR80h:10039
  21. [M] T. MIYAKE, On automorphic forms on GL2 and Hecke operators, Ann. of Math., 94 (1971), 174-189. Zbl0215.37301MR45 #8607
  22. [P1] A. A. PANCHISHKIN, Convolutions of Hilbert modular forms and their non-Archimedean analogues, Mat. Sbornik, 64 (1988), 574-587 (Russian ; English translation : Math. USSR Sbornik, 64 (1989), 571-584). Zbl0677.10019MR89k:11033
  23. [P2] A. A. PANCHISHKIN, Convolutions of Hilbert modular forms, motives, and p-adic L-functions, preprint, Max-Planck-Institut für Mathematik. Zbl0677.10019
  24. [Sh1] G. SHIMURA, The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J., 45 (1978), 637-679. Zbl0394.10015MR80a:10043
  25. [Sh2] G. SHIMURA, On some arithmetic properties of modular forms of one and several variables, Ann. of Math., 102 (1975), 491-515. Zbl0327.10028MR58 #10758
  26. [Sh3] G. SHIMURA, On certain zeta functions attached to two Hilbert modular forms : I. The case of Hecke characters, Ann. of Math., 114 (1981), 127-164. Zbl0468.10016MR83d:10036a
  27. [Sh4] G. SHIMURA, On Eisenstein series, Duke Math., J., 50 (1983), 417-476. Zbl0519.10019MR84k:10019
  28. [Sh5] G. SHIMURA, On the holomorphy of certain Dirichlet series, Proc. London Math. Soc., 31 (1975), 79-98. Zbl0311.10029MR52 #3064
  29. [Sh6] G. SHIMURA, Confluent hypergeometric functions on tube domains, Math. Ann., 260 (1982), 269-302. Zbl0502.10013MR84f:32040
  30. [Sh7] G. SHIMURA, Algebraic relations between critical values of zeta functions and inner products, Amer. J. Math., 104 (1983), 253-285. Zbl0518.10032MR84j:10038
  31. [Sh8] G. SHIMURA, On the critical values of certain Dirichlet series and the periods of automorphic forms, Inventiones Math., 94 (1988), 245-305. Zbl0656.10018MR90e:11069
  32. [T] R. TAYLOR, On Galois representations associated to Hilbert modular forms, Inventiones Math., 98 (1989), 265-280. Zbl0705.11031MR90m:11176
  33. [W] A. WEIL, Basic number theory, Springer, 1974. Zbl0326.12001MR55 #302

Citations in EuDML Documents

top
  1. Haruzo Hida, p -adic ordinary Hecke algebras for GL ( 2 )
  2. Andrzej Dabrowski, p -adic L -functions of Hilbert modular forms
  3. H. Hida, J. Tilouine, Anti-cyclotomic Katz p -adic L -functions and congruence modules
  4. Haruzo Hida, On the search of genuine p -adic modular L -functions for G L ( n ) . With a correction to: On p -adic L -functions of G L ( 2 ) × G L ( 2 ) over totally real fields
  5. Alexei A. Panchishkin, Motives over totally real fields and p -adic L -functions

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.