Hilbert space approach to the quantum mechanical three-body problem
Annales de l'I.H.P. Physique théorique (1974)
- Volume: 21, Issue: 2, page 97-145
- ISSN: 0246-0211
Access Full Article
topHow to cite
topGinibre, J., and Moulin, M.. "Hilbert space approach to the quantum mechanical three-body problem." Annales de l'I.H.P. Physique théorique 21.2 (1974): 97-145. <http://eudml.org/doc/75825>.
@article{Ginibre1974,
author = {Ginibre, J., Moulin, M.},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {2},
pages = {97-145},
publisher = {Gauthier-Villars},
title = {Hilbert space approach to the quantum mechanical three-body problem},
url = {http://eudml.org/doc/75825},
volume = {21},
year = {1974},
}
TY - JOUR
AU - Ginibre, J.
AU - Moulin, M.
TI - Hilbert space approach to the quantum mechanical three-body problem
JO - Annales de l'I.H.P. Physique théorique
PY - 1974
PB - Gauthier-Villars
VL - 21
IS - 2
SP - 97
EP - 145
LA - eng
UR - http://eudml.org/doc/75825
ER -
References
top- [1] S.T. Kuroda, Nuov. Cim., t. XII, 1959, p. 431. Zbl0084.44801
- [2] T. Kato, Proc. Intern. Conf. on Functional Analysis and related topics, Tokyo Univ. Press, 1970. MR268713
- [3] S. Agmon, Jour. Anal. Math., t. 23, 1970, p. 1. Zbl0211.40703
- [4] B. Simon, Comm. Pure Appl. Math., t. 22, 1969, p. 531. Zbl0167.11003MR247300
- [5] T. Ikebe, Arch. Ratl. Mech. Anal., t. 5, 1960, p. 1. Zbl0145.36902MR128355
- [6] S. Agmon, International Congress of Mathematicians, Nice, 1970.
- [7] M. Reed and B. Simon, Methods of modern mathematical Physics, Academic Press, New York, Vol. III, in preparation. Zbl0405.47007
- [8] R. Lavine, Commun. Math. Phys., t. 20, 1971, p. 301. Zbl0207.13706MR293945
- [9] R. Lavine, J. Func. Anal., t. 12, 1973, p. 30. Zbl0246.47017MR342880
- [10] J. Aguilar and J.M. Combes, Commun. Math. Phys., t. 22, 1971, p. 269. Zbl0219.47011MR345551
- [11] B. Simon, Commun. Math. Phys., t. 27, 1972, p. 1. Zbl0237.35025
- [12] W. Hunziker, Helv. Phys. Acta, t. 39, 1966, p. 451. Zbl0141.44701MR211711
- [13] L.D. Faddeev, Trudy Steklov Math. Inst., t. 69, 1963. Zbl0125.21502
- [14] K. Hepp, Helv. Phys. Acta, t. 42, 1969, p. 425. MR247840
- [15] A. Schtalheim, Helv. Phys. Acta, t. 44, 1971, p. 642.
- [16] R. Lavine, J. Math. Phys., t. 14, 1973, p. 376. Zbl0269.47005MR317689
- [17] E. Balslev and J.M. Combes, Commun. Math. Phys., t. 22, 1971, p. 280. Zbl0219.47005MR345552
- [18] T. Kato, Math. Ann., t. 162, 1966, p. 258. Zbl0139.31203MR190801
- [19] R.G. Newton, J. Math. Phys., t. 12, 1971, p. 1552. Zbl0237.70012
- [20] A. Martin, Helv. Phys. Acta, t. 45, 1972, p. 140.
- [21] B. Simon, Quantum Meehanics for Hamiltonians defined as quadratic forms, Princeton Univ. Press, Princeton, 1971. Zbl0232.47053MR455975
- [22] E. Nelson, J. Math. Phys., t. 5, 1964, p. 332. Zbl0133.22905
- [23] U. Greifenegger, K. Jörgens, J. Weidmann and M. Winkler, Streutheorie für Schrödinger operatoren, preprint, 1972.
- [24] N. Dunford and J. Schwartz, Linear operators, Interscience, New York, 1958, Vol. I. Zbl0084.10402MR117523
- [25] B. Simon, Helv. Phys. Acta, t. 43, 1970, p. 607. MR456101
- [26] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Academic Press, New York, 1973, Vol. I. Zbl0242.46001
- [27] S.T. Kuroda, Jour. Anal. Math., t. 20, 1967, p. 57. Zbl0153.16903
- [28] R. Lavine, Indiana Univ. Math. Jour., t. 21, 1972, p. 643. Zbl0216.38501MR300134
- [29] K.M. Watson, Phys. Rev., t. 89, 1953, p. 575. Zbl0050.22906
- [30] A.J. O'Connor, Commun. Math. Phys., t. 32, 1973, p. 319.
- [31] R.J. Iorio and M. O'Carroll, Commun. Math. Phys., t. 27, 1972, p. 137.
- [32] J.M. Combes, Commun. Math. Phys., t. 12, 1969, p. 283. Zbl0174.28304
- [33] D.R. Yafaev, Dokl. Akad. Nauk SSSR, t. 206, 1972, p. 68 ; Transl. Sov. Phys. Dokl., t. 17, 1973, p. 849.
- [34] L.V. Kantorovitch and G.P. Akilov, Functional Analysis in Normed Spaces, Pergamon Press, London, 1964. Zbl0127.06104
Citations in EuDML Documents
top- D. Yafaev, Radiation conditions and scattering theory for -particle quantum systems
- Dimitri R. Yafaev, Radiation conditions and scattering theory for -particle hamiltonians (main ideas of the approach)
- S. Graffi, V. Grecchi, H. J. Silverstone, Resonances and convergence of perturbation theory for N-body atomic systems in external AC-electric field
- Eric Mourre, Applications de la méthode de Lavine au problème à trois corps
- George A. Hagedorn, Asymptotic completeness for the impact parameter approximation to three particle scattering
- Kalyan B. Sinha, M. Krishna, Pl. Muthuramalingam, On the completeness in three body scattering
- Erik Balslev, Erik Skibsted, Boundedness of two- and three-body resonances
- Erik Balslev, Analytic scattering theory of quantum mechanical three-body systems
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.