Hilbert space approach to the quantum mechanical three-body problem

J. Ginibre; M. Moulin

Annales de l'I.H.P. Physique théorique (1974)

  • Volume: 21, Issue: 2, page 97-145
  • ISSN: 0246-0211

How to cite

top

Ginibre, J., and Moulin, M.. "Hilbert space approach to the quantum mechanical three-body problem." Annales de l'I.H.P. Physique théorique 21.2 (1974): 97-145. <http://eudml.org/doc/75825>.

@article{Ginibre1974,
author = {Ginibre, J., Moulin, M.},
journal = {Annales de l'I.H.P. Physique théorique},
language = {eng},
number = {2},
pages = {97-145},
publisher = {Gauthier-Villars},
title = {Hilbert space approach to the quantum mechanical three-body problem},
url = {http://eudml.org/doc/75825},
volume = {21},
year = {1974},
}

TY - JOUR
AU - Ginibre, J.
AU - Moulin, M.
TI - Hilbert space approach to the quantum mechanical three-body problem
JO - Annales de l'I.H.P. Physique théorique
PY - 1974
PB - Gauthier-Villars
VL - 21
IS - 2
SP - 97
EP - 145
LA - eng
UR - http://eudml.org/doc/75825
ER -

References

top
  1. [1] S.T. Kuroda, Nuov. Cim., t. XII, 1959, p. 431. Zbl0084.44801
  2. [2] T. Kato, Proc. Intern. Conf. on Functional Analysis and related topics, Tokyo Univ. Press, 1970. MR268713
  3. [3] S. Agmon, Jour. Anal. Math., t. 23, 1970, p. 1. Zbl0211.40703
  4. [4] B. Simon, Comm. Pure Appl. Math., t. 22, 1969, p. 531. Zbl0167.11003MR247300
  5. [5] T. Ikebe, Arch. Ratl. Mech. Anal., t. 5, 1960, p. 1. Zbl0145.36902MR128355
  6. [6] S. Agmon, International Congress of Mathematicians, Nice, 1970. 
  7. [7] M. Reed and B. Simon, Methods of modern mathematical Physics, Academic Press, New York, Vol. III, in preparation. Zbl0405.47007
  8. [8] R. Lavine, Commun. Math. Phys., t. 20, 1971, p. 301. Zbl0207.13706MR293945
  9. [9] R. Lavine, J. Func. Anal., t. 12, 1973, p. 30. Zbl0246.47017MR342880
  10. [10] J. Aguilar and J.M. Combes, Commun. Math. Phys., t. 22, 1971, p. 269. Zbl0219.47011MR345551
  11. [11] B. Simon, Commun. Math. Phys., t. 27, 1972, p. 1. Zbl0237.35025
  12. [12] W. Hunziker, Helv. Phys. Acta, t. 39, 1966, p. 451. Zbl0141.44701MR211711
  13. [13] L.D. Faddeev, Trudy Steklov Math. Inst., t. 69, 1963. Zbl0125.21502
  14. [14] K. Hepp, Helv. Phys. Acta, t. 42, 1969, p. 425. MR247840
  15. [15] A. Schtalheim, Helv. Phys. Acta, t. 44, 1971, p. 642. 
  16. [16] R. Lavine, J. Math. Phys., t. 14, 1973, p. 376. Zbl0269.47005MR317689
  17. [17] E. Balslev and J.M. Combes, Commun. Math. Phys., t. 22, 1971, p. 280. Zbl0219.47005MR345552
  18. [18] T. Kato, Math. Ann., t. 162, 1966, p. 258. Zbl0139.31203MR190801
  19. [19] R.G. Newton, J. Math. Phys., t. 12, 1971, p. 1552. Zbl0237.70012
  20. [20] A. Martin, Helv. Phys. Acta, t. 45, 1972, p. 140. 
  21. [21] B. Simon, Quantum Meehanics for Hamiltonians defined as quadratic forms, Princeton Univ. Press, Princeton, 1971. Zbl0232.47053MR455975
  22. [22] E. Nelson, J. Math. Phys., t. 5, 1964, p. 332. Zbl0133.22905
  23. [23] U. Greifenegger, K. Jörgens, J. Weidmann and M. Winkler, Streutheorie für Schrödinger operatoren, preprint, 1972. 
  24. [24] N. Dunford and J. Schwartz, Linear operators, Interscience, New York, 1958, Vol. I. Zbl0084.10402MR117523
  25. [25] B. Simon, Helv. Phys. Acta, t. 43, 1970, p. 607. MR456101
  26. [26] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Academic Press, New York, 1973, Vol. I. Zbl0242.46001
  27. [27] S.T. Kuroda, Jour. Anal. Math., t. 20, 1967, p. 57. Zbl0153.16903
  28. [28] R. Lavine, Indiana Univ. Math. Jour., t. 21, 1972, p. 643. Zbl0216.38501MR300134
  29. [29] K.M. Watson, Phys. Rev., t. 89, 1953, p. 575. Zbl0050.22906
  30. [30] A.J. O'Connor, Commun. Math. Phys., t. 32, 1973, p. 319. 
  31. [31] R.J. Iorio and M. O'Carroll, Commun. Math. Phys., t. 27, 1972, p. 137. 
  32. [32] J.M. Combes, Commun. Math. Phys., t. 12, 1969, p. 283. Zbl0174.28304
  33. [33] D.R. Yafaev, Dokl. Akad. Nauk SSSR, t. 206, 1972, p. 68 ; Transl. Sov. Phys. Dokl., t. 17, 1973, p. 849. 
  34. [34] L.V. Kantorovitch and G.P. Akilov, Functional Analysis in Normed Spaces, Pergamon Press, London, 1964. Zbl0127.06104

Citations in EuDML Documents

top
  1. D. Yafaev, Radiation conditions and scattering theory for N -particle quantum systems
  2. Dimitri R. Yafaev, Radiation conditions and scattering theory for N -particle hamiltonians (main ideas of the approach)
  3. S. Graffi, V. Grecchi, H. J. Silverstone, Resonances and convergence of perturbation theory for N-body atomic systems in external AC-electric field
  4. Eric Mourre, Applications de la méthode de Lavine au problème à trois corps
  5. George A. Hagedorn, Asymptotic completeness for the impact parameter approximation to three particle scattering
  6. Kalyan B. Sinha, M. Krishna, Pl. Muthuramalingam, On the completeness in three body scattering
  7. Erik Balslev, Erik Skibsted, Boundedness of two- and three-body resonances
  8. Erik Balslev, Analytic scattering theory of quantum mechanical three-body systems

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.