Huygens' principle

R. G. McLenaghan

Annales de l'I.H.P. Physique théorique (1982)

  • Volume: 37, Issue: 3, page 211-236
  • ISSN: 0246-0211

How to cite

top

McLenaghan, R. G.. "Huygens' principle." Annales de l'I.H.P. Physique théorique 37.3 (1982): 211-236. <http://eudml.org/doc/76172>.

@article{McLenaghan1982,
author = {McLenaghan, R. G.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Huygens' principle; four independent variables; family of space-times; self-adjoint differential equation; Hadamard's conjecture},
language = {eng},
number = {3},
pages = {211-236},
publisher = {Gauthier-Villars},
title = {Huygens' principle},
url = {http://eudml.org/doc/76172},
volume = {37},
year = {1982},
}

TY - JOUR
AU - McLenaghan, R. G.
TI - Huygens' principle
JO - Annales de l'I.H.P. Physique théorique
PY - 1982
PB - Gauthier-Villars
VL - 37
IS - 3
SP - 211
EP - 236
LA - eng
KW - Huygens' principle; four independent variables; family of space-times; self-adjoint differential equation; Hadamard's conjecture
UR - http://eudml.org/doc/76172
ER -

References

top
  1. [1] L. Asgeirsson, Some hints on Huygen's principle and Hadamard's conjecture. Comm. Pure Appl. Math., t. 9, 1956, p. 307-326. Zbl0074.31101MR82034
  2. [2] R. Bach, Zur Weylshcen Relativitats theorie. Math. Zeitscher, t. 9, 1921, p. 110- 135. MR1544454JFM48.1035.01
  3. [3] Y. Bruhat, Théorème d'existence pour certains systèmes d'équations aux dérivées partielles non linéaires. Acta Math., t. 88, 1952, p. 141-225. Zbl0049.19201MR53338
  4. [4] M. Cahen, R. Debever and L. Defrise, A Complex vectorial formalism in general relativity, J. Math. Mech., t. 16, 1967, p. 761-786. Zbl0149.23401MR207370
  5. [5] M. Cahen and R. McLenaghan, Métriques des espaces lorentziens symétriques à quatre dimensions. C. R. Acad. Sci. Paris, t. 266, 1968, p. 1125-1128. Zbl0172.27904MR231326
  6. [6] M. Chevalier, Sur le noyau de diffusion de l'opérateur laplacien. C. R. Acad. Sci. Paris, T. 264, 1967, p. 380-382. MR226555
  7. [7] E. Cotton, Sur les invariants différentials de quelques équations linéaires aux dérivées partielles du second ordre. Ann. Sc. Ec. Norm. Superieure, t. 17, 1900, p. 211-244. Zbl31.0379.02MR1508982JFM31.0379.02
  8. [8] R. Courant and D. Hilbert, Methods of mathematical physics, vol. 2, Interscience, New York, 1962. Zbl0099.29504
  9. [9] R. Debever, Le rayonnement gravitationnel, le tenseur de Riemann en relativité générale. Cah. Phys., t. 168-169, 1964, p. 303-349. MR187877
  10. [10] A. Douglis, The problem of Cauchy for linear hyperbolic equations of second order. Comm. Pure Appl. Math., t. 7, 1954, p. 271-295. Zbl0059.08801MR62931
  11. [11] A. Douglis, A criterion for the validity of Huygens' principle. Comm. Pure Appl. Math., t. 9, 1956, p. 391-402. Zbl0075.09701MR82035
  12. [12] J.C. Du Plessis, Polynomial conformal tensors. Proc. Cambridge Philos. Soc., t. 68, 1970, p. 329-344. Zbl0203.54603MR259802
  13. [13] J. Ehlers and K. Kundt, Exact solutions of the gravitational Field equations. Article in Gravitation an introduction to current research ; edited by L. Witten, Wiley, New York, 1964. 
  14. [14] F.G. Friedlander, The wave equation in a curved space-time. Cambridge University Press, Cambridge, 1975. Zbl0316.53021MR460898
  15. [15] R. Goldoni. A necessary condition for the validity of Huygen's principle on a curved space-time, J. Math. Phys., 18, 1977, p. 2125-2128. Zbl0366.35053MR484227
  16. [16] P. Günther, Zur Gültigkeit des Huygensschen Princips bei partiellen Differentialgleichungen von normalen hyperbolischen Typus. S.-B. Sächs. Akad. Wiss. Leipzig Math.-Natur. Kl., t. 100, 1952, p. 1-43. Zbl0046.32201MR50136
  17. [17] P. Günther, Über einige spezielle Probleme aus der Theorie der Linearen partiellen Differentialgleichungen zweiter Ordnung. S.-B. Sächs. Akad. Wiss. Leipzig Math.-Natur. Kl., t. 102, 1957, p. 1-50. Zbl0085.08202MR109937
  18. [18] P. Günther, Ein Beispiel einer nichttrivalen Huygensschen Differentialgleichungen mit vier unabhängigen Variablen. Arch. Rational Mech. Anal., t. 18, 1965, p. 103- 106. Zbl0125.05404MR174865
  19. [19] P. Günther, Einige Sätze über huygenssche Differentialgleichungen. Wiss. Zeitschr. Karl Marx Univ., Math.-natu. Reihe Leipzig, t. 14, 1965, p. 497-507. Zbl0173.12203MR198012
  20. [20] P. Günther and V. Wünsch, Maxwellsche Gleichungen und Huygensshes. Prinzip I. Math. Nach., 63, 1974, p. 97-121. Zbl0288.35042MR363377
  21. [21] J. Hadamard, Lectures on Cauchy's problem in linear partial differential equations. Yale University Press, New Haven, 1923. Zbl49.0725.04JFM49.0725.04
  22. [22] J. Hadamard, The problem of diffusion of waves. Ann. of Math., t. 43, 1942, p. 510-522. Zbl0063.01841MR6809
  23. [23] G. Herglotz, Über die Bestimmung eines Linienelementes in normal Koorinaten aus dem Riemannschen Krümmgstensor, Math. Ann., t. 93, 1925, p. 46-53. MR1512221JFM50.0492.07
  24. [24] E. Hölder, Poissonsche Wellenformel in nicht euclidischen Raumen. Ber. Verh. Sachs. Akad. Wiss. Leipzig, t. 99, 1938, p. 53-66. Zbl0019.26101JFM64.1174.02
  25. [25] N.H. Ibragimov and E.V. Mamontov, Sur le problème de J. Hadamard relatif à la diffusion des ondes. C. R. Acad. Sc. Paris, t. 270, 1970, p. 456-458. Zbl0196.12004MR257567
  26. [26] N.H. Ibragimov, Huygens' principle. Amer. Math. Soc. Transl. (2), t. 104, 1976, p. 141-151. Zbl0327.35008
  27. [27] N.H. Ibragimov and E.V. Mamontov, On the Cauchy problem for the equation Utt - Uxx - ∑aij(x - t)Uyiyj = 0. Math. Sbornik Tom, t. 102 (144), 1977, N° 3, p. 347-363. Zbl0386.35027MR440207
  28. [28] H.P. Künzle, Maxwell Fields satisfying Huygens' principle. Proc. Cambridge Philos. Soc., t. 64, 1968, p. 779-785. 
  29. [29] A. Lichnerowicz, Propagateurs et commutateurs en relativité générale. Publ. Math. I. H. E. S., t. 10, 1961, p. 293-344. Zbl0098.42607MR158726
  30. [30] M. Mathisson, Eine Lösungsmethode fur Differentialgleichungen vom normalen hyperbolischen Typus. Math. Ann., t. 107, 1932, p. 400-419. Zbl58.1561.01JFM58.1561.01
  31. [31] M. Mathisson, Le problème de M. Hadamard relatif à la diffusion des ondes. Acta Math., t. 71, 1939, p. 249-282. Zbl0022.22802MR728
  32. [32] R.G. McLenaghan, An explicit determination of the empty space-times on which the wave equation satisfies Huygens' principle. Proc. Cambridge Philos. Soc., t. 65, 1969, p. 139-155. Zbl0182.13403MR234700
  33. [33] R.G. Mclenaghan, On the validity of Huygens' principle for second order partial differential equations with four independent variables. Part I: Derivation of necessary conditions. Ann. Inst. Henri Poincaré, t. A 20, 1974, p. 153-188. Zbl0287.35058MR361452
  34. [34] R.G. Mclenaghan and J. Leroy, Complex recurrent space-times. Proc. Roy. Soc. London, t. A 327. 1972, p. 229-249. Zbl0243.53030MR309517
  35. [35] R. Penrose, A spinor approach to general relativity, Ann. Physics, t. 10, 1960, p. 171-201. Zbl0091.21404MR115765
  36. [36] A.Z. Petrov, Einstein-Raume, Akademie Verlag, Berlin, 1964. Zbl0114.21003MR162594
  37. [37] F.A.E. Pirani, Introduction to gravitational radiation theory. Article in Lectures on General Relativity, edited by S. Deser and W. Ford, Brandeis Summer Institute in Theoretical Physics, t. 1. 1964. Prentice-Hall, New York. 
  38. [38] H.S. Rlse. A.G. Walker and T.J. Willmore, Harmonic Spaces, Edizioni Cremonese. Rome. 1961. Zbl0134.39202MR142062
  39. [39] R. Schimming, Zur Gültiakeit des huygensschen Prinzips bei einer speziellen Metrik, Z. A. M. M., t. 51, 1971, p. 201-208. Zbl0221.35011MR290313
  40. [40] J.A. Schouten, Ricci-Calculus, Springer-Verlag, Berlin, 1954. Zbl0057.37803MR516659
  41. [41] S.L. Sobolev, Méthode nouvelle à résoudre le problème de Cauchy pour les équations linéaires hyperboliques normales. Mat. Sb. (N. S.), t. 1. 1936, p. 39-70. Zbl0014.05902JFM62.0568.01
  42. [42] K.L. Stellmacher. Ein Beispiel einer Huygensschen Differentialgleichung. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl., II. t. 10. 1953, p. 133-138. Zbl0052.09901MR60695
  43. [43] K.L. Stellmacher, Eine Klasse huygenscher Differentialgleichungen und ihre Integration. Math. Ann., t. 130, 1955, p. 219-233. Zbl0134.31101MR73831
  44. [44] P. Szekeres, Spaces conformal to a class of spaces in general relativity. Proc. Roy. Soc. London, t. A 274, 1963, p. 206-212. Zbl0113.44805MR158729
  45. [45] P. Szekeres, Conformal Tensors. Proc. Roy. Soc. London, t. A 304, 1968, p. 113-122. Zbl0159.23903
  46. [46] G. Vandercappellen, Contributions à l'étude du principle d'Huygens' en espace temps courbe. Mémoire de Licence, Université de l'État à Mons, 1980. 
  47. [47] V. Wünsch, Über selbstadjungierte Huygenssche Differentialgleichungen mit vier unabhängigen Variablen. Math. Nachr., t. 47, 1970, p. 131-154. Zbl0211.40803MR298221
  48. [48] V. Wünsch, Maxwellsche Gleichungen und Huygensches II. Math. Nach., t. 73, 1976, p. 19-36. Zbl0288.35043MR426807
  49. [49] V. Wünsch, Über eine Klasse Konforminvarianter Tensoren. Math. Nach., t. 73, 1976, p. 37-58. Zbl0287.53014MR433342
  50. [50] V. Wünsch, Cauchy-Problem und Huygenssches Prinzip bei einigen Klassen spinorieller Feldgleichungen I. Beitr. zur Analysis, t. 12, 1978, p. 47-76. Zbl0448.58022MR507097
  51. [51] V. Wünsch, Cauchy-Problem und Huygenssches Prinzip bei einigen Klassen spinorieller Feldgleichunger II. Beitr. zur Analysis, t. 13, 1979, p. 147-177. Zbl0467.35067MR536225

Citations in EuDML Documents

top
  1. J. Carminati, R. G. McLenaghan, An explicit determination of the space-times on which the conformally invariant scalar wave equation satisfies Huygens' principle. — Part II : Petrov type D space-times
  2. J. Carminati, R. G. McLenaghan, An explicit determination of the space-times on which the conformally invariant scalar wave equation satisfies Huygens' principle. Part III : Petrov type III space-times
  3. V. Wünsch, Huygens' principle on Petrov type N space-times
  4. W. G. Anderson, R. G. McLenaghan, F. D. Sasse, Huygens' principle for the non-self-adjoint scalar wave equation on Petrov type III space-times
  5. V. Wünsch, Moments and Huygens' principle for conformally invariant field equations in curved space-times
  6. R. G. McLenaghan, T. F. Walton, An explicit determination of the non-self-adjoint wave equations on curved space-time that satisfy Huygens' principle. Part I : Petrov type N background space-times
  7. J. Carminati, R. G. McLenaghan, An explicit determination of the Petrov type N space-times on which the conformally invariant scalar wave equation satisfies Huygens' principle

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.