Semi-classical estimates for resolvents and asymptotics for total scattering cross-sections
Annales de l'I.H.P. Physique théorique (1987)
- Volume: 46, Issue: 4, page 415-442
- ISSN: 0246-0211
Access Full Article
topHow to cite
topRobert, Didier, and Tamura, Hideo. "Semi-classical estimates for resolvents and asymptotics for total scattering cross-sections." Annales de l'I.H.P. Physique théorique 46.4 (1987): 415-442. <http://eudml.org/doc/76367>.
@article{Robert1987,
author = {Robert, Didier, Tamura, Hideo},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {semi-classical estimates; resolvent; Schrödinger operator; commutator method; total scattering cross-sections},
language = {eng},
number = {4},
pages = {415-442},
publisher = {Gauthier-Villars},
title = {Semi-classical estimates for resolvents and asymptotics for total scattering cross-sections},
url = {http://eudml.org/doc/76367},
volume = {46},
year = {1987},
}
TY - JOUR
AU - Robert, Didier
AU - Tamura, Hideo
TI - Semi-classical estimates for resolvents and asymptotics for total scattering cross-sections
JO - Annales de l'I.H.P. Physique théorique
PY - 1987
PB - Gauthier-Villars
VL - 46
IS - 4
SP - 415
EP - 442
LA - eng
KW - semi-classical estimates; resolvent; Schrödinger operator; commutator method; total scattering cross-sections
UR - http://eudml.org/doc/76367
ER -
References
top- [1] S. Agmon, Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa, t. 2, 1975, p. 151-218. Zbl0315.47007MR397194
- [2] V. Enss and B. Simon, Finite total cross sections in nonrelativistic quantum mechanics. Comm. Math. Phys., t. 76, 1980, p. 177-209. Zbl0471.35065MR587510
- [3] T. Ikebe and Y. Saito, Limiting absorption method and absolute continuity for the Schrödinger operator. J. Math. Kyoto Univ., t. 12, 1972, p. 513-542. Zbl0257.35022MR312066
- [4] H. Isozaki, On the generalized Fourier transforms associated with Schrödinger operators with long-range perturbations. J. Reine Angew. Math., t. 337, 1982, p. 18-67. Zbl0486.35026MR676041
- [5] H. Isozaki and H. Kitada, Modified wave operators with time-independent modifiers. J. Fac. Sci. Univ. Tokyo Sect. IA, Math., t. 32, 1985, p. 77-104. Zbl0582.35036MR783182
- [6] H. Kitada and K. Yajima, A scattering theory for time-dependent long-range potentials. Duke Math. J., t. 49, 1982, p. 341-376. Zbl0499.35087MR659945
- [7] E. Mourre, Absence of singular continuous spectrum for certain selfadjoint operators. Comm. Math. Phys., t. 78, 1981, p. 391-408. Zbl0489.47010MR603501
- [8] M. Murata, High energy resolvent estimates I, first order operators, and II, higher order elliptic operators. J. Math. Soc. Japan, t. 35, 1983, p. 711-733, and t. 36, 1984, p. 1-10. Zbl0513.35010MR714471
- [9] P. Perry, I.M. Sigal and B. Simon, Spectral analysis of N-body Schrödinger operators. Ann. of Math., t. 114, 1981, p. 519-567. Zbl0477.35069MR634428
- [10] M. Reed and B. Simon, Methods of modern mathematical physics, III, Scattering theory, Academic Press, 1979. Zbl0405.47007MR529429
- [11] D. Robert, Autour de l'approximation semi-classique. Notas de Curso. Instituto de Math., no 21, Recife, 1983 et PM 68, Birkhaüser, 1987. Zbl0621.35001MR897108
- [12] D. Robert and H. Tamura, Semi-classical bounds for resolvents of Schrödinger operators and asymptotics for scattering phases. Comm. Partial Differ. Equ., t. 9, 1984, p. 1017-1058. Zbl0561.35021MR755930
- [13] A.V. Sobolev and D.R. Yafaev, On the quasi-classical limit of the total scattering cross-section in nonrelativistic quantum mechanics. Ann. Inst. Henri Poincaré, t. 44, 1986, p. 195-210. Zbl0607.35070MR839284
- [14] B.R. Vainberg, On the short wave asymptotic behavior of solutions of stationary problems and the asymptotic behavior as t → ∞ of solutions of non-stationary problems. Russian Math. Surveys, t. 30, 1975, p. 1-58. Zbl0318.35006MR415085
- [15] B.R. Vainberg, Quasi-classical approximation in stationary scattering problems. Func. Anal. Appl., t. 11, 1977, p. 6-18. Zbl0381.35022
- [16] D.R. Yafaev, The eikonal approximation and the asymptotics of the total cross–section for the Schrödinger equation. Ann. Inst. Henri Poincaré, t. 44, 1986, p. 397- 425. Zbl0608.35054MR850898
- [17] K. Yajima, The quasi-classical limit of scattering amplitude - finite range potentials—. Lecture Notes in Math., 1159, Springer, 1984. Zbl0591.35079MR824991
- [18] K. Yajima, The quasi-classical limit of scattering amplitude - L2 approach for short range potentials —, Preprint, 1985. MR824991
Citations in EuDML Documents
top- Didier Robert, H. Tamura, Limite semi-classique de l'amplitude de diffusion
- X. P. Wang, Sections efficaces dans le problème à -corps
- D. R. Yafaev, On the quasi-classical asymptotics of the forward scattering amplitude and of the total scattering cross-section
- Christian Gérard, Semiclassical resolvent estimates for two and three-body Schrödinger operators
- Hideo Tamura, Shadow scattering by magnetic fields in two dimensions
- Shu Nakamura, Scattering theory for the shape resonance model. I. Non-resonant energies
- Xue-Ping Wang, Time-decay of scattering solutions and classical trajectories
- Th. Jecko, Classical limit of elastic scattering operator of a diatomic molecule in the Born-Oppenheimer approximation
- Évelyne Latrémolière, Opérateur de Schrödinger avec une métrique
- Didier Robert, H. Tamura, Asymptotic behavior of scattering amplitudes in semi-classical and low energy limits
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.