Consequences of the validity of Huygens' principle for the conformally invariant scalar wave equation, Weyl's neutrino equation and Maxwell's equations on Petrov type II space-times
J. Carminati; S. R. Czapor; R. G. McLenaghan; G. C. Williams
Annales de l'I.H.P. Physique théorique (1991)
- Volume: 54, Issue: 1, page 9-16
- ISSN: 0246-0211
Access Full Article
topHow to cite
topCarminati, J., et al. "Consequences of the validity of Huygens' principle for the conformally invariant scalar wave equation, Weyl's neutrino equation and Maxwell's equations on Petrov type II space-times." Annales de l'I.H.P. Physique théorique 54.1 (1991): 9-16. <http://eudml.org/doc/76524>.
@article{Carminati1991,
author = {Carminati, J., Czapor, S. R., McLenaghan, R. G., Williams, G. C.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Huygens' principle; scalar wave equation},
language = {eng},
number = {1},
pages = {9-16},
publisher = {Gauthier-Villars},
title = {Consequences of the validity of Huygens' principle for the conformally invariant scalar wave equation, Weyl's neutrino equation and Maxwell's equations on Petrov type II space-times},
url = {http://eudml.org/doc/76524},
volume = {54},
year = {1991},
}
TY - JOUR
AU - Carminati, J.
AU - Czapor, S. R.
AU - McLenaghan, R. G.
AU - Williams, G. C.
TI - Consequences of the validity of Huygens' principle for the conformally invariant scalar wave equation, Weyl's neutrino equation and Maxwell's equations on Petrov type II space-times
JO - Annales de l'I.H.P. Physique théorique
PY - 1991
PB - Gauthier-Villars
VL - 54
IS - 1
SP - 9
EP - 16
LA - eng
KW - Huygens' principle; scalar wave equation
UR - http://eudml.org/doc/76524
ER -
References
top- [1] J. Carminati and R.G. Mclenaghan, Determination of all Petrov Type N Space-Times on which the Conformally Invariant Scalar Wave Equation Satisfies Huygens' Principle, Phys. Lett., Vol. 105 A, 1984, pp. 351-354. Zbl0694.35074MR766032
- [2] J. Carminati and R.G. McLenaghan, An Explicit Determination of the Petrov Type N Space-Times on which the Conformally Invariant Scalar Wave Equation Satisfies Huygens' Principle, Ann. Inst. Henri Poincare, Phys. Théor., Vol. 44, 1986, pp. 115- 153. Zbl0595.35067MR839281
- [3] J. Carminati and R.G. Mclenaghan, An Explicit Determination of the Space-Times on which the Conformally Invariant Scalar Wave Equation Satisfies Huygens' Principle. Part II: Petrov Type D Space-Times, Ann. Inst. Henri Poincaré, Phys. Théor., Vol. 47, 1987, pp. 337-354. Zbl0694.35074MR933681
- [4] J. Carminati and R.G. Mclenaghan, An Explicit Determination of the Space-Times on which the Conformally Invariant Scalar Wave Equation Satisfies Huygens' Principle. Part III : Petrov Type III Space-Times, Ann. Inst. Henri Poincare, Phys. Théor., Vol. 48, 1988, pp. 77-96. Zbl0706.35131MR947160
- [5] P. Günther, Zur Gültigkeit des Huygensschen Princips bei partiellen Differentialgleichungen von normalen hyperbolischen Typus, S.-B. Sachs. Akad. Wiss. Leipzig Math.-Natur K., Vol. 100, 1952, pp. 1-43. Zbl0046.32201MR50136
- [6] P. Günther, Ein Beispiel einer nichttrivalen Huygensschen Differentialgleichungen mit vier unabhängigen Variablen, Arch. Rational Mech. Anal., Vol. 18, 1965, pp. 103-106. Zbl0125.05404MR174865
- [7] P. Günther, Eigine Sätze über Huygenssche Differentialgleichungen. Wiss. Zeitschr. Karl Marx Univ., Math.-Natu. Reihe Leipzig, Vol. 14, 1965, pp. 498-507. Zbl0173.12203MR198012
- [8] P. Günther and V. Wünsch, Maxwellsche Gleichungen und Huygenssches Prinzip I, Math. Nach., Vol. 63, 1974, pp. 97-121. Zbl0288.35042MR363377
- [9] J. Hadamard, Lectures on Cauchy's Problem in Linear Partial Differential Equations, Yale University Press, New Haven, 1923. Zbl49.0725.04JFM49.0725.04
- [10] H.P. Künzle, Maxwell Fields Satisfying Huygens' Principle, Proc. Cambridge Philos. Soc., Vol. 64, 1968, pp. 770-785.
- [11] R.G. McLenaghan, An Explicit Determination of the Empty Space-Times on which the Wave Equation Satisfies Huygens' Principle, Proc. Cambridge Philos. Soc., Vol. 65, 1969, pp. 139-155. Zbl0182.13403MR234700
- [12] R.G. Mclenaghan, On the Validity of Huygens' Principle for Second Order Partial Differential Equations with Four Independent Variables. Part I : Derivation of Necessary Conditions, Ann. Inst. Henri Poincaré, Vol. A 20, 1974, pp. 153-188. Zbl0287.35058MR361452
- [13] R. G McLENAGHAN and T.F. Walton, An Explicit Determination of the Non-self-Adjoint Wave Equations on Curved Space-Time that Satisfy Huygens' Principle. Part I : Petrov Type N Background Space-Times, Ann. Inst. Henri Poincare, Phys. Théor., Vol. 48, 1988, pp. 267-280. Zbl0645.53047MR950268
- [14] R. G McLENAGHAN and G.C. Williams, An Explicit Determination of the Petrov Type D Space-Times on which Weyl's Neutrino Equation and Maxwell's Equations Satisfy Huygens' Principle, Ann. Inst. Henri Poincare, Phys. Théor. (to appear). Zbl0709.53053
- [15] B. Rinke and V. Wünsch, Zum Huygensschen Prinzip bei der skalaren Wellengleichung, Beitr. zur Analysis, Vol. 18, 1981, pp. 43-75. Zbl0501.53010MR650138
- [16] V. Wünsch, Über selbstadjungierte Huygenssche Differentialgleichungen mit vier unabhängigen Variablen, Math. Nachr., Vol. 47, 1970, pp. 131-154. Zbl0211.40803MR298221
- [17] V. Wünsch, Maxwellsche Gleichunge und Huygenssches Prinzip II, Math. Nachr., Vol. 73, 1976, pp. 19-36. Zbl0288.35043MR426807
- [18] V. Wünsch, Cauchy-problem und Huygenssches Prinzip bei einigen Klassen spinorieller Feldgleichungen I, Beitr. zur Analysis, Vol. 12, 1978, pp. 47-76. Zbl0448.58022MR507097
- [19] V. Wünsch, Cauchy-problem und Huygenssches Prinzip bei einigen Klassen spinorieller FeldgleichungenII, Beitr. zur Analysis, Vol. 13, 1979, pp. 147-177. Zbl0467.35067MR536225
- [20] V. Wünsch, Hugens' principle on Petrov type-D space-times, Ann. Physik, Vol. 46, 1989, pp. 593-597. Zbl0697.53027MR1051239
Citations in EuDML Documents
top- S. R. Czapor, R. G. McLenaghan, F. D. Sasse, Complete solution of Hadamard's problem for the scalar wave equation on Petrov type III space-times
- W. G. Anderson, R. G. McLenaghan, On the validity of Huygens' principle for second order partial differential equations with four independent variables. II. A sixth necessary condition
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.