Travelling wave solutions to the K-P-P equation : alternatives to Simon Harris' probabilistic analysis

A. E. Kyprianou

Annales de l'I.H.P. Probabilités et statistiques (2004)

  • Volume: 40, Issue: 1, page 53-72
  • ISSN: 0246-0203

How to cite

top

Kyprianou, A. E.. "Travelling wave solutions to the K-P-P equation : alternatives to Simon Harris' probabilistic analysis." Annales de l'I.H.P. Probabilités et statistiques 40.1 (2004): 53-72. <http://eudml.org/doc/77799>.

@article{Kyprianou2004,
author = {Kyprianou, A. E.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {branching Brownian motion; KPP equation; travelling wave solutions; size biased measures; Bessel-3 processes; Brownian motion; spine decompositions},
language = {eng},
number = {1},
pages = {53-72},
publisher = {Elsevier},
title = {Travelling wave solutions to the K-P-P equation : alternatives to Simon Harris' probabilistic analysis},
url = {http://eudml.org/doc/77799},
volume = {40},
year = {2004},
}

TY - JOUR
AU - Kyprianou, A. E.
TI - Travelling wave solutions to the K-P-P equation : alternatives to Simon Harris' probabilistic analysis
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2004
PB - Elsevier
VL - 40
IS - 1
SP - 53
EP - 72
LA - eng
KW - branching Brownian motion; KPP equation; travelling wave solutions; size biased measures; Bessel-3 processes; Brownian motion; spine decompositions
UR - http://eudml.org/doc/77799
ER -

References

top
  1. [1] D.G. Aronson, H.F. Weinberger, Nonlinear diffusions in population genetics, combustion and nerve propagation, in: Goldstein J. (Ed.), Partial Differential Equations and Related Topics, Lecture Notes in Math., vol. 446, Springer-Verlag, Berlin/New York, 1975. Zbl0325.35050MR427837
  2. [2] K. Athreya, P. Ney, Branching Processes, Springer-Verlag, Berlin, 1972. Zbl0259.60002MR373040
  3. [3] K. Athreya, Change of measures for Markov chains and the LlogL theorem for branching processes, Bernoulli6 (1999) 323-338. Zbl0969.60076MR1748724
  4. [4] J. Bertoin, Splitting at the infimum and excursions in half-lines for random walks and Lévy processes, Stochastic Process. Appl.42 (1993) 307-313. Zbl0757.60067MR1232850
  5. [5] M. Bachmann, Limit theorems for the minimal position in a branching random walk with independent logconcave displacements, Adv. in Appl. Probab.32 (2000) 159-176. Zbl0973.60098MR1765165
  6. [6] J.D. Biggins, Martingale convergence in the branching random walk, J. Appl. Probab.14 (1977) 25-37. Zbl0356.60053MR433619
  7. [7] J.D. Biggins, Uniform convergence of martingales in the one-dimensional branching random walk, in: Selected proceedings of the Sheffield Symposium on Applied Probability, 1989 , IMS Lecture Notes Monogr. Ser., vol. 18, 1991, pp. 159-173. Zbl0770.60077MR1193068
  8. [8] J.D. Biggins, Uniform convergence of martingales in the branching random walk, Ann. Probab.20 (1992) 137-151. Zbl0748.60080MR1143415
  9. [9] J.D. Biggins, A.E. Kyprianou, Branching random walk: Seneta–Heyde norming, in: Chauvin B., Cohen S., Rouault A. (Eds.), Trees: Proceedings of a Workshop, Versailles, June 14–16, 1995 , Birkhäuser, Basel, 1996. Zbl0864.60070
  10. [10] J.D. Biggins, A.E. Kyprianou, Measure change in multi-type branching, Advances of Applied Probability, in press. Zbl1056.60082
  11. [11] M. Bramson, Maximal displacement of branching Brownian motion, Comm. Pure Appl. Math.31 (1978) 531-581. Zbl0361.60052MR494541
  12. [12] M. Bramson, Convergence of solutions to the Kolmogorov nonlinear diffusion equation to travelling waves, Mem. Amer. Math. Soc.44 (1983) 1-190. Zbl0517.60083MR705746
  13. [13] A. Champneys, S.C. Harris, J.F. Toland, J. Warren, D. Williams, Algebra, analysis and probability for a coupled system of reaction–diffusion equations, Philos. Trans. Roy. Soc. London (A)350 (1995) 69-112. Zbl0824.60070
  14. [14] B. Chauvin, Multiplicative martingales and stopping lines for branching Brownian motion, Ann. Probab.30 (1991) 1195-1205. Zbl0738.60079MR1112412
  15. [15] B. Chauvin, A. Rouault, KPP equation and supercritical branching Brownian motion in the subcritical speed area. Application to spatial trees, Probab. Theory Related Fields80 (1988) 299-314. Zbl0653.60077MR968823
  16. [16] B. Chauvin, A. Rouault, Supercritical branching Brownian motion and KPP equation in the critical speed area, Math. Nachr.149 (1990) 41-59. Zbl0724.60091MR1124793
  17. [17] B. Chauvin, A. Rouault, A. Wakolbinger, Growing conditioned trees, Stochastic Process. Appl.39 (1991) 117-130. Zbl0747.60077MR1135089
  18. [18] R. Durrett, Probability: Theory and Examples, Duxbury, Belmont, CA, 1996. Zbl1202.60001MR1609153
  19. [19] E.B. Dynkin, Superprocesses and partial differential equations, Ann. Probab.21 (1993) 1185-1262. Zbl0806.60066MR1235414
  20. [20] J. Engländer, A.E. Kyprianou, Local extinction versus local exponential growth for spatial branching processes, Ann. Probab., 2002, submitted for publication. Zbl1056.60083MR2040776
  21. [21] A. Etheridge, An Introduction to Superprocesses, Univ. Lecture Ser., Amer. Math. Soc, Providence, RI, 2000. Zbl0971.60053MR1779100
  22. [22] S. Evans, Two representations of a superprocess, Proc. Roy. Soc. Edinburgh Sect. A125 (1993) 959-971. Zbl0784.60052MR1249698
  23. [23] R.A. Fisher, The advance of advantageous genes, Ann. Eugenics7 (1937) 355-369. Zbl63.1111.04JFM63.1111.04
  24. [24] S.C. Harris, D. Williams, Large-deviations and martingales for a typed branching diffusion: I, Astérisque236 (1996) 133-154. Zbl0857.60088MR1417979
  25. [25] S.C. Harris, Convergence of a Gibbs–Boltzmann random measure for a typed branching diffusion, in: Séminaire de Probabilités, vol. XXXIV, 2000. Zbl0985.60053
  26. [26] S.C. Harris, Travelling-waves for the F-K-P-P equation via probabilistic arguments, Proc. Roy. Soc. Edinburgh Sect. A129 (1999) 503-517. Zbl0946.35040MR1693633
  27. [27] P. Jagers, General branching processes as Markov fields, Stochastic Process. Appl.32 (1989) 193-212. Zbl0678.92009MR1014449
  28. [28] F.I. Karpelevich, M.Ya. Kelbert, Yu.M. Suhov, The branching diffusion, stochastic equations and travelling wave solutions to the equation of Kolmogorov–Petrovskii–Piskounov, in: Boccara N., Goles E., Martinez S., Picco P. (Eds.), Cellular Automata and Cooperative Behaviour, Kluwer Academic, Dordrecht, 1993, pp. 343-366. Zbl0864.60069
  29. [29] M.Ya. Kelbert, Yu.M. Suhov, The Markov branching random walk and systems of reaction–diffusion (Kolmogorov–Petrovskii–Piskunov) equations, Comm. Math. Phys.167 (1995) 607-634. Zbl0820.60068
  30. [30] J.F.C. Kingman, The first birth problem for an age-dependent branching processes, Ann. Probab.3 (1975) 790-801. Zbl0325.60079MR400438
  31. [31] A. Kolmogorov, I. Petrovskii, N. Piskounov, Étude de l'équation de la diffusion avec croissance de la quantité de la matière et son application a un problèm biologique, in: Moscow Univ. Math. Bull., vol. 1, 1937, pp. 1-25. Zbl0018.32106
  32. [32] T. Kurtz, R. Lyons, R. Pemantle, Y. Peres, A conceptual proof of the Kesten–Stigum theorem for multi-type branching processes, in: Athreya K.B., Jagers P. (Eds.), Classical and Modern Branching Processes, Math. Appl., vol. 84, Springer-Verlag, New York, 1997, pp. 181-186. Zbl0868.60068
  33. [33] J.-F. LeGall, Spatial Branching Processes, Random Snakes and Partial Differential Equations, Lectures Math., Birkhäuser, Basel, 1999. Zbl0938.60003MR1714707
  34. [34] O.D. Lyne, Travelling waves for a certain first-order coupled PDE system, Electron. J. Probab.5 (2000), Paper 14. Zbl0954.35105MR1781026
  35. [35] R. Lyons, A simple path to Biggins' martingale convergence theorem, in: Athreya K.B., Jagers P. (Eds.), Classical and Modern Branching Processes, Math. Appl., vol. 84, Springer-Verlag, New York, 1997, pp. 217-222. Zbl0897.60086MR1601749
  36. [36] R. Lyons, R. Pemantle, Y. Peres, Conceptual proofs of LlogL criteria for mean behaviour of branching processes, Ann. Probab.23 (1995) 1125-1138. Zbl0840.60077MR1349164
  37. [37] H.P. McKean, Excursions of a non-singular diffusion, Z. Wahr. werv. Geb.1 (1963) 230-239. Zbl0117.35903MR162282
  38. [38] H.P. McKean, Application of Brownian motion to the equation of Kolmogorov–Petrovskii–Piskunov, Comm. Pure Appl. Math.29 (1975) 323-331. Zbl0316.35053
  39. [39] J. Neveu, Multiplicative martingales for spatial branching processes, in: Çinlar E., Chung K.L., Getoor R.K. (Eds.), Seminar on Stochastic Processes, 1987, Progr. Probab. and Statist., vol. 15, Birkhaüser, Boston, 1988, pp. 223-241. Zbl0652.60089MR1046418
  40. [40] P. Olofsson, The xlogx condition for general branching processes, J. Appl. Probab.35 (1998) 537-554. Zbl0926.60063MR1659492
  41. [41] Pitman, One dimensional Brownian motion and three dimensional Bessel processes, Adv. Appl. Probab.7 (1975) 511-526. Zbl0332.60055MR375485
  42. [42] T. Shiga, S. Watanabe, Bessel diffusions as a one-parameter family of diffusion processes, Z. Wahr. Verw. Geb.27 (1973) 37-46. Zbl0327.60047MR368192
  43. [43] A.V. Skorohod, Branching diffusion processes, Theory Probab. Appl.9 (1964) 492-497. Zbl0264.60058MR168030
  44. [44] K. Uchiyama, The behaviour of solutions of some non-linear diffusion equations for large time. 1, J. Math. Kyoto Univ.18 (1978) 453-508. Zbl0408.35053MR509494
  45. [45] D. Williams, Path decomposition and continuity of local times for one-dimensional diffusions, Proc. London Math. Soc.28 (1974) 737-768. Zbl0326.60093MR350881

Citations in EuDML Documents

top
  1. A. E. Kyprianou, R.-L. Liu, A. Murillo-Salas, Y.-X. Ren, Supercritical super-brownian motion with a general branching mechanism and travelling waves
  2. J. W. Harris, S. C. Harris, Branching brownian motion with an inhomogeneous breeding potential
  3. J. W. Harris, S. C. Harris, A. E. Kyprianou, Further probabilistic analysis of the Fisher–Kolmogorov–Petrovskii–Piscounov equation : one sided travelling-waves
  4. Pascal Maillard, The number of absorbed individuals in branching brownian motion with a barrier
  5. Anne-Laure Basdevant, On the equivalence of some eternal additive coalescents

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.