The concentration-compactness principle in the calculus of variations. The locally compact case, part 1

P. L. Lions

Annales de l'I.H.P. Analyse non linéaire (1984)

  • Volume: 1, Issue: 2, page 109-145
  • ISSN: 0294-1449

How to cite

top

Lions, P. L.. "The concentration-compactness principle in the calculus of variations. The locally compact case, part 1." Annales de l'I.H.P. Analyse non linéaire 1.2 (1984): 109-145. <http://eudml.org/doc/78069>.

@article{Lions1984,
author = {Lions, P. L.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {concentration-compactness; minimization problems on unbounded domains; local compactness; rotating stars; Choquard-Pekar problem; nonlinear fields equations},
language = {eng},
number = {2},
pages = {109-145},
publisher = {Gauthier-Villars},
title = {The concentration-compactness principle in the calculus of variations. The locally compact case, part 1},
url = {http://eudml.org/doc/78069},
volume = {1},
year = {1984},
}

TY - JOUR
AU - Lions, P. L.
TI - The concentration-compactness principle in the calculus of variations. The locally compact case, part 1
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1984
PB - Gauthier-Villars
VL - 1
IS - 2
SP - 109
EP - 145
LA - eng
KW - concentration-compactness; minimization problems on unbounded domains; local compactness; rotating stars; Choquard-Pekar problem; nonlinear fields equations
UR - http://eudml.org/doc/78069
ER -

References

top
  1. [1] J.F.G. Auchmuty and R. Beals, Variational solutions of some nonlinear free boundary problems. Arch. Rat. Mech. Anal., t. 43, 1971, p. 255-271. Zbl0225.49013MR337260
  2. [2] J.F.G. Auchmuty and R. Beals, Models of rotating stars. Astrophys. J., t. 165, 1971, p. 79-82. 
  3. [3] H. Berestycki and P.L. Lions, Nonlinear scalar field equations. I. Existence of a ground state. Arch. Rat. Mech. Anal., t. 82, 1983, p. 313-346. Zbl0533.35029MR695535
  4. [4] H. Berestycki and P.L. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions. Arch. Rat. Mech. Anal., t. 82, 1983, p. 347-376. Zbl0556.35046MR695536
  5. [5] H. Berestycki and P.L. Lions, in preparation. 
  6. [6] M.S. Berger, On the existence and structure of stationary states for a nonlinear Klein-Gordon equation. J. Funct. Anal., t. 9, 1972, p. 249-261. Zbl0224.35061MR299966
  7. [7] T. Cazenave and P.L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations. Comm. Math. Phys., t. 85, 1982, p. 549-561. Zbl0513.35007MR677997
  8. [8] C.V. Coffman, Uniqueness of the ground state solution for Δu - u + u3 = 0 and a variational characterization of other solutions. Arch. Rat. Mech. Anal., t. 46, 1972, p. 81-95. Zbl0249.35029MR333489
  9. [9] S. Coleman, V. Glazer and A. Martin, Action minima among solutions to a class of Euclidean scalar field equations. Comm. Math. Phys., t. 58, 1978, p. 211-221. MR468913
  10. [10] Donsker and S.R.S. Varadhan, personal communication. 
  11. [11] M.J. Esteban and P.L. Lions, Existence and non-existence results for semilinear elliptic problems in unbounded domains. Proc. Roy. Edim., t. 93 A, 1982, p. 1-14. Zbl0506.35035MR688279
  12. [12] L.E. Fraenkel and M.S. Berger, A global theory of steady vortex rings in an ideal fluid. Acta Math., t. 132, 1974, p. 13-51. Zbl0282.76014MR422916
  13. [13] A. Friedman, Variational principles and free-boundary problems, Wiley, New York, 1982. Zbl0564.49002MR679313
  14. [14] P. Lévy, Théorie de l'addition des variables aléatoires, Gauthier-Villars, Paris, 1954. Zbl0056.35903JFM63.0490.04
  15. [15] E.H. Lieb, Existence and uniqueness of the minimizing solutions of Choquard's nonlinear equation. Stud. Appl. Math., t. 57, 1977, p. 93-105. Zbl0369.35022MR471785
  16. [16] P.L. Lions, Minimization problems in L1(R3). J. Funct. Anal., t. 41, 1981, p. 236-275. Zbl0464.49019MR615163
  17. [17] P.L. Lions, Compactness and topological methods for some nonlinear variational problems of Mathematical Physics. In Nonlinear Problems : Present and Future ; A. R. Bishop, D. K. Campbell, B. Nicolaenko (eds.), North-Holland, Amsterdam, 1982. Zbl0496.35079MR675625
  18. [18] P.L. Lions, Symmetry and compactness in Sobolev spaces. J. Funct. Anal., t. 49, 1982, p. 315-334. Zbl0501.46032MR683027
  19. [19] P.L. Lions, Principe de concentration-compacité en Calcul des Variations. C. R. Acad. Sci. Paris, t. 294, 1982, p. 261-264. Zbl0485.49005MR653747
  20. [20] P.L. Lions, On the concentration-compactness principle. In Contributions to Non-linear Partial Differential Equations. Pitman, London, 1983. Zbl0522.49007MR730813
  21. [21] P.L. Lions, The Choquard equation and related questions. Nonlinear Anal. T. M. A., t. 4, 1980, p. 1063-1073. Zbl0453.47042MR591299
  22. [22] Z. Nehari, On a nonlinear differential equation arising in nuclear physics. Proc. R. Irish Acad., t. 62, 1963, p. 117-135. Zbl0124.30204MR165176
  23. [23] K.R. Parthasarathy, Probability measures on metric spaces, Academic Press, New York, 1967. Zbl0153.19101MR226684
  24. [24] G.H. Ryder, Boundary value problems for a class of nonlinear differential equations. Pac. J. Math., t. 22, 1967, p. 477-503. Zbl0152.28303MR219794
  25. [25] W. Strauss, Existence of solitary waves in higher dimensions. Comm. Math. Phys., t. 55, 1977, p. 149-162. Zbl0356.35028MR454365
  26. [26] B.R. Suydam, Self-focusing of very powerful laser beams. U. S. Dept. of Commerce. N. B. S. Special Publication 387. 

Citations in EuDML Documents

top
  1. Louis Jeanjean, Kazunaga Tanaka, A positive solution for an asymptotically linear elliptic problem on N autonomous at infinity
  2. Zhi-Qiang Wang, Nonradial solutions of nonlinear Neumann problems in radially symmetric domains
  3. Yongqing Li, Zhi-Qiang Wang, Jing Zeng, Ground states of nonlinear Schrödinger equations with potentials
  4. Louis Jeanjean, Kazunaga Tanaka, A positive solution for an asymptotically linear elliptic problem on N autonomous at infinity
  5. Nadir Arada, Relaxation of optimal control problems in 𝖫 𝗉 -spaces
  6. Orlando Lopes, Nonlocal variational problems arising in long wave propagation
  7. Giovanna Citti, On the exterior Dirichlet problem for Δ u - u + f ( x , u ) = 0
  8. Giovanni Mancini, Roberta Musina, The role of the boundary in some semilinear Neumann problems
  9. Dao-Min Cao, Multiple solutions of a semilinear elliptic equation in N
  10. Mathieu Lewin, Gaz de bosons dans le régime de champ moyen : les théories de Hartree et Bogoliubov

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.