The concentration-compactness principle in the calculus of variations. The locally compact case, part 1
Annales de l'I.H.P. Analyse non linéaire (1984)
- Volume: 1, Issue: 2, page 109-145
- ISSN: 0294-1449
Access Full Article
topHow to cite
topLions, P. L.. "The concentration-compactness principle in the calculus of variations. The locally compact case, part 1." Annales de l'I.H.P. Analyse non linéaire 1.2 (1984): 109-145. <http://eudml.org/doc/78069>.
@article{Lions1984,
author = {Lions, P. L.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {concentration-compactness; minimization problems on unbounded domains; local compactness; rotating stars; Choquard-Pekar problem; nonlinear fields equations},
language = {eng},
number = {2},
pages = {109-145},
publisher = {Gauthier-Villars},
title = {The concentration-compactness principle in the calculus of variations. The locally compact case, part 1},
url = {http://eudml.org/doc/78069},
volume = {1},
year = {1984},
}
TY - JOUR
AU - Lions, P. L.
TI - The concentration-compactness principle in the calculus of variations. The locally compact case, part 1
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1984
PB - Gauthier-Villars
VL - 1
IS - 2
SP - 109
EP - 145
LA - eng
KW - concentration-compactness; minimization problems on unbounded domains; local compactness; rotating stars; Choquard-Pekar problem; nonlinear fields equations
UR - http://eudml.org/doc/78069
ER -
References
top- [1] J.F.G. Auchmuty and R. Beals, Variational solutions of some nonlinear free boundary problems. Arch. Rat. Mech. Anal., t. 43, 1971, p. 255-271. Zbl0225.49013MR337260
- [2] J.F.G. Auchmuty and R. Beals, Models of rotating stars. Astrophys. J., t. 165, 1971, p. 79-82.
- [3] H. Berestycki and P.L. Lions, Nonlinear scalar field equations. I. Existence of a ground state. Arch. Rat. Mech. Anal., t. 82, 1983, p. 313-346. Zbl0533.35029MR695535
- [4] H. Berestycki and P.L. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions. Arch. Rat. Mech. Anal., t. 82, 1983, p. 347-376. Zbl0556.35046MR695536
- [5] H. Berestycki and P.L. Lions, in preparation.
- [6] M.S. Berger, On the existence and structure of stationary states for a nonlinear Klein-Gordon equation. J. Funct. Anal., t. 9, 1972, p. 249-261. Zbl0224.35061MR299966
- [7] T. Cazenave and P.L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations. Comm. Math. Phys., t. 85, 1982, p. 549-561. Zbl0513.35007MR677997
- [8] C.V. Coffman, Uniqueness of the ground state solution for Δu - u + u3 = 0 and a variational characterization of other solutions. Arch. Rat. Mech. Anal., t. 46, 1972, p. 81-95. Zbl0249.35029MR333489
- [9] S. Coleman, V. Glazer and A. Martin, Action minima among solutions to a class of Euclidean scalar field equations. Comm. Math. Phys., t. 58, 1978, p. 211-221. MR468913
- [10] Donsker and S.R.S. Varadhan, personal communication.
- [11] M.J. Esteban and P.L. Lions, Existence and non-existence results for semilinear elliptic problems in unbounded domains. Proc. Roy. Edim., t. 93 A, 1982, p. 1-14. Zbl0506.35035MR688279
- [12] L.E. Fraenkel and M.S. Berger, A global theory of steady vortex rings in an ideal fluid. Acta Math., t. 132, 1974, p. 13-51. Zbl0282.76014MR422916
- [13] A. Friedman, Variational principles and free-boundary problems, Wiley, New York, 1982. Zbl0564.49002MR679313
- [14] P. Lévy, Théorie de l'addition des variables aléatoires, Gauthier-Villars, Paris, 1954. Zbl0056.35903JFM63.0490.04
- [15] E.H. Lieb, Existence and uniqueness of the minimizing solutions of Choquard's nonlinear equation. Stud. Appl. Math., t. 57, 1977, p. 93-105. Zbl0369.35022MR471785
- [16] P.L. Lions, Minimization problems in L1(R3). J. Funct. Anal., t. 41, 1981, p. 236-275. Zbl0464.49019MR615163
- [17] P.L. Lions, Compactness and topological methods for some nonlinear variational problems of Mathematical Physics. In Nonlinear Problems : Present and Future ; A. R. Bishop, D. K. Campbell, B. Nicolaenko (eds.), North-Holland, Amsterdam, 1982. Zbl0496.35079MR675625
- [18] P.L. Lions, Symmetry and compactness in Sobolev spaces. J. Funct. Anal., t. 49, 1982, p. 315-334. Zbl0501.46032MR683027
- [19] P.L. Lions, Principe de concentration-compacité en Calcul des Variations. C. R. Acad. Sci. Paris, t. 294, 1982, p. 261-264. Zbl0485.49005MR653747
- [20] P.L. Lions, On the concentration-compactness principle. In Contributions to Non-linear Partial Differential Equations. Pitman, London, 1983. Zbl0522.49007MR730813
- [21] P.L. Lions, The Choquard equation and related questions. Nonlinear Anal. T. M. A., t. 4, 1980, p. 1063-1073. Zbl0453.47042MR591299
- [22] Z. Nehari, On a nonlinear differential equation arising in nuclear physics. Proc. R. Irish Acad., t. 62, 1963, p. 117-135. Zbl0124.30204MR165176
- [23] K.R. Parthasarathy, Probability measures on metric spaces, Academic Press, New York, 1967. Zbl0153.19101MR226684
- [24] G.H. Ryder, Boundary value problems for a class of nonlinear differential equations. Pac. J. Math., t. 22, 1967, p. 477-503. Zbl0152.28303MR219794
- [25] W. Strauss, Existence of solitary waves in higher dimensions. Comm. Math. Phys., t. 55, 1977, p. 149-162. Zbl0356.35028MR454365
- [26] B.R. Suydam, Self-focusing of very powerful laser beams. U. S. Dept. of Commerce. N. B. S. Special Publication 387.
Citations in EuDML Documents
top- Louis Jeanjean, Kazunaga Tanaka, A positive solution for an asymptotically linear elliptic problem on autonomous at infinity
- Zhi-Qiang Wang, Nonradial solutions of nonlinear Neumann problems in radially symmetric domains
- Yongqing Li, Zhi-Qiang Wang, Jing Zeng, Ground states of nonlinear Schrödinger equations with potentials
- Louis Jeanjean, Kazunaga Tanaka, A positive solution for an asymptotically linear elliptic problem on autonomous at infinity
- Nadir Arada, Relaxation of optimal control problems in -spaces
- Orlando Lopes, Nonlocal variational problems arising in long wave propagation
- Giovanna Citti, On the exterior Dirichlet problem for
- Giovanni Mancini, Roberta Musina, The role of the boundary in some semilinear Neumann problems
- Dao-Min Cao, Multiple solutions of a semilinear elliptic equation in
- Mathieu Lewin, Gaz de bosons dans le régime de champ moyen : les théories de Hartree et Bogoliubov
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.