Quasi-minima

Mariano Giaquinta; Enrico Giusti

Annales de l'I.H.P. Analyse non linéaire (1984)

  • Volume: 1, Issue: 2, page 79-107
  • ISSN: 0294-1449

How to cite

top

Giaquinta, Mariano, and Giusti, Enrico. "Quasi-minima." Annales de l'I.H.P. Analyse non linéaire 1.2 (1984): 79-107. <http://eudml.org/doc/78070>.

@article{Giaquinta1984,
author = {Giaquinta, Mariano, Giusti, Enrico},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {gamma-convergence; quasi-minimum; minima of variational integrals; regularity of Q-minima; weak maximum principle; Liouville property},
language = {eng},
number = {2},
pages = {79-107},
publisher = {Gauthier-Villars},
title = {Quasi-minima},
url = {http://eudml.org/doc/78070},
volume = {1},
year = {1984},
}

TY - JOUR
AU - Giaquinta, Mariano
AU - Giusti, Enrico
TI - Quasi-minima
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1984
PB - Gauthier-Villars
VL - 1
IS - 2
SP - 79
EP - 107
LA - eng
KW - gamma-convergence; quasi-minimum; minima of variational integrals; regularity of Q-minima; weak maximum principle; Liouville property
UR - http://eudml.org/doc/78070
ER -

References

top
  1. [1] E. Acerbi, N. Fusco, Semicontinuity Problems in the Calculus of Variations. Arch. Rat. Mech. Anal., to appear. Zbl0565.49010MR751305
  2. [2] B.V. Boyarskii, Homeomorphic solutions of Beltrami systems. Dokl. Akad. Nauk SSR, t. 102, 1955, p. 661-664. MR71620
  3. [3] B.V. Boyarskii, Generalized solutions of a system of differential equations of the first order of elliptic type with discontinuous coefficients. Mat. Sbornik, t. 43, 1957, p. 451-503. MR106324
  4. [4] E. De Giorgi, Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. torino cl. Sci. Fis. Mat. Nat., (3), t. 3, 1957, p. 25-43. Zbl0084.31901MR93649
  5. [5] E. De Giorgi, Generalized limits in Calculus of Variations, in « Topics in Functional Analysis 1980-1981 ». Quaderni Scuola Norm. Sup. Pisa, 1981. Zbl0493.49004MR671756
  6. [6] I. Ekeland, Nonconvex minimization problems. Bull. Amer. Math. Soc., t. 1, 1979, p. 443-474. Zbl0441.49011MR526967
  7. [7] J. Frehse, A discontinuous solution of a mildly nonlinear elliptic system. Math. Z., t. 134, 1973, p. 229-230. Zbl0267.35038MR344673
  8. [8] N. Fusco, Quasi-convessità e semicontinuità per integrali multipli di ordine superiore. Ricerche di Mat., t. 29, 1980, p. 307-323. Zbl0508.49012
  9. [9] F.W. Gehring, The Lp-integrability of the partial derivatives of a quasi conformal mapping. Acta Math., t. 130, 1973, p. 265-277. Zbl0258.30021MR402038
  10. [10] M. Giaquinta, Multiple integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Annals of Math. Studies, t. 105, Princeton University Press, 1983. Zbl0516.49003MR717034
  11. [11] M. Giaquinta, On the differentiability of the extremals of variational integrals, in « Nonlinear Analysis, Function Spaces and Application 2 », Teubner Texte zur Mathem., Leipzig, 1982. Zbl0494.49032MR684997
  12. [12] M. Giaquinta, E. Giusti, On the regularity of the minima of variational integrals. Acta Math., t. 148, 1982, p. 31-46. Zbl0494.49031MR666107
  13. [13] M. Giaquinta, E. Giusti, Differentiability of minima of non-differentiable functionals. Inventiones Math., t. 72, 1983, p. 285-298. Zbl0513.49003MR700772
  14. [14] M. Giaquinta, G. Modica, Regularity results for some classes of higher order nonlinear elliptic systems. J. für reine u. angew. Math., t. 311-312, 1979, p. 145-169. Zbl0409.35015MR549962
  15. [15] S. Hildebrandt, K.-O. Widman, Some regularity results for quasilinear elliptic systems of second order. Math. Z., t. 142, 1975, p. 67-86. Zbl0317.35040MR377273
  16. [16] O.A. Ladyzhenskaya, N.N. Ural'tseva, Linear and quasilinear elliptic equations. Academic Press, New York, 1968. Zbl0164.13002MR244627
  17. [17] P. Marcellini, C. Sbordone, On the existence of minima of multiple integrals of the Calculus of Variations. J. Math. pures et appl., t. 62, 1983, p. 1-9. Zbl0516.49011MR700045
  18. [18] N.G. Meyers, An Lp-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Sc. Norm. Sup. Pisa, (3), t. 17, 1963, p. 189-206. Zbl0127.31904MR159110
  19. [19] N.G. Meyers, A. Elcrat, Some results on regularity for solutions of nonlinear elliptic systems and quasiregular functions. Duke Math. J., t. 42, 1975, p. 121-136. Zbl0347.35039MR417568
  20. [20] J. Necas. Les Méthodes directes en théorie des equations elliptiques, Praha, Akademia, 1967. MR227584
  21. [21] Y.G. Reshetnyak, Extremal properties of mappings with bounded distortion. Siberian Math. J. (transl. of Sibirsk Mat. Z.), t. 10, 1969, p. 962-969. Zbl0203.38901
  22. [22] C. Sbordone, Su alcune applicazioni di un tipo di convergenza variazionale. Ann. Sc. Norm. Sup. Pisa, (4), t. 2, 1975, p. 617-638. Zbl0317.49012MR417753
  23. [23] J. Serrin, Local behaviour of solutions of quasilinear equations. Acta Math., t. 111, 1964, p. 247-302. Zbl0128.09101MR170096

Citations in EuDML Documents

top
  1. E. Di Benedetto, Neil S. Trudinger, Harnack inequalities for quasi-minima of variational integrals
  2. Andrea Cianchi, Local boundedness of minimizers of anisotropic functionals
  3. G. Barles, Remarks on uniqueness results of the first eigenvalue of the p-Laplacian
  4. Jürgen Moser, Minimal solutions of variational problems on a torus
  5. Silvana Marchi, A Wiener type criterion for weighted quasiminima
  6. Michela Eleuteri, Regularity results for a class of obstacle problems
  7. Vittorio Scornazzani, Pointwise estimates for minimizers of some non-uniformly degenerate functionals
  8. Eduardo V. Teixeira, A variational treatment for general elliptic equations of the flame propagation type : regularity of the free boundary
  9. Josef Daněček, Eugen Viszus, L 2 , λ -regularity for minima of variational integrals
  10. Mariano Giaquinta, Giuseppe Modica, Partial regularity of minimizers of quasiconvex integrals

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.