Harnack inequalities for quasi-minima of variational integrals
E. Di Benedetto; Neil S. Trudinger
Annales de l'I.H.P. Analyse non linéaire (1984)
- Volume: 1, Issue: 4, page 295-308
- ISSN: 0294-1449
Access Full Article
topHow to cite
topDi Benedetto, E., and Trudinger, Neil S.. "Harnack inequalities for quasi-minima of variational integrals." Annales de l'I.H.P. Analyse non linéaire 1.4 (1984): 295-308. <http://eudml.org/doc/78076>.
@article{DiBenedetto1984,
author = {Di Benedetto, E., Trudinger, Neil S.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {quasi-minima; Harnack inequality; De Giorgi classes; quasilinear elliptic equations; weak solutions},
language = {eng},
number = {4},
pages = {295-308},
publisher = {Gauthier-Villars},
title = {Harnack inequalities for quasi-minima of variational integrals},
url = {http://eudml.org/doc/78076},
volume = {1},
year = {1984},
}
TY - JOUR
AU - Di Benedetto, E.
AU - Trudinger, Neil S.
TI - Harnack inequalities for quasi-minima of variational integrals
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1984
PB - Gauthier-Villars
VL - 1
IS - 4
SP - 295
EP - 308
LA - eng
KW - quasi-minima; Harnack inequality; De Giorgi classes; quasilinear elliptic equations; weak solutions
UR - http://eudml.org/doc/78076
ER -
References
top- [1] E. De Giorgi, Sulla differenziabilità e l'analiticità degli integrali multipli regolari, Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. (3), t. 3, 1957, p. 25-43. Zbl0084.31901MR93649
- [2] M. Giaquinta and E. Giusti, Quasi-Minima, Ann. d'Inst. Henri Poincaré, Analyse Non Linéaire, t. 1, 1984, p. 79 à 107. Zbl0541.49008MR778969
- [3] M. Giaquinta and E. Giusti, On the regularity of the minima of variational integrals, Acta Math., t. 148, 1982, p. 31-46. Zbl0494.49031MR666107
- [4] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. 2nd Ed. Springer-Verlag, New York, 1983. Zbl0562.35001MR737190
- [5] O.A. Ladyzenskaya and N.N. Uralt'zeva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968. Zbl0164.13002MR244627
- [6] N.V. Krylov, M.V. Safonov, Certain properties of Solutions of parabolic equations with measurable coefficients. Izvestia Akad. Nauk SSSR, t. 40, 1980, p. 161-175, English transl. Math. USSR Izv., t. 16, 1981. Zbl0464.35035MR563790
- [7] C.B. Morrey, Multiple integrals in the Calculus of Variations. Springer-Verlag, New York, 1966. Zbl0142.38701MR202511
- [8] J. Moser, A new proof of de Giorgi's theorem concerning the regularity problem for elliptic differential equations. Comm. Pure Appl. Math., t. 13, 1960, p. 457- 468. Zbl0111.09301MR170091
- [9] J. Moser, On Harnack's theorem for elliptic differential equations. Comm. Pure Appl. Math., t. 14, 1961, p. 577-591. Zbl0111.09302MR159138
- [10] J. Serrin, Local behavior of solutions of quasi-linear elliptic equations. Acta Math., t. 111, 1964, p. 247-302. Zbl0128.09101MR170096
- [11] N.S. Trudinger, On Harnack type inequalities and their application to quasi-linear elliptic equations. Comm. Pure Appl. Math., t. 20, 1967, p. 721-747. Zbl0153.42703MR226198
- [12] N.S. Trudinger, Local estimates for subsolutions and supersolutions of general second order elliptic quasilinear equations. Inventiones Math., t. 61, 1980, p. 67-69. Zbl0453.35028MR587334
Citations in EuDML Documents
top- Tuomo Kuusi, Harnack estimates for weak supersolutions to nonlinear degenerate parabolic equations
- G. Barles, Remarks on uniqueness results of the first eigenvalue of the p-Laplacian
- Jürgen Moser, Minimal solutions of variational problems on a torus
- B. Franchi, R. Serapioni, Pointwise estimates for a class of strongly degenerate elliptic operators : a geometrical approach
- Silvana Marchi, A Wiener type criterion for weighted quasiminima
- J. Kinnunen, M. Kotilainen, V. Latvala, Hardy-Littlewood Type Gradient Estimates for Quasiminimizers
- Vittorio Scornazzani, Pointwise estimates for minimizers of some non-uniformly degenerate functionals
- Alberto Fiorenza, Miroslav Krbec, Indices of Orlicz spaces and some applications
- Gary Lieberman, On the natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva
- Mariano Giaquinta, Giuseppe Modica, Partial regularity of minimizers of quasiconvex integrals
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.