Harnack inequalities for quasi-minima of variational integrals

E. Di Benedetto; Neil S. Trudinger

Annales de l'I.H.P. Analyse non linéaire (1984)

  • Volume: 1, Issue: 4, page 295-308
  • ISSN: 0294-1449

How to cite

top

Di Benedetto, E., and Trudinger, Neil S.. "Harnack inequalities for quasi-minima of variational integrals." Annales de l'I.H.P. Analyse non linéaire 1.4 (1984): 295-308. <http://eudml.org/doc/78076>.

@article{DiBenedetto1984,
author = {Di Benedetto, E., Trudinger, Neil S.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {quasi-minima; Harnack inequality; De Giorgi classes; quasilinear elliptic equations; weak solutions},
language = {eng},
number = {4},
pages = {295-308},
publisher = {Gauthier-Villars},
title = {Harnack inequalities for quasi-minima of variational integrals},
url = {http://eudml.org/doc/78076},
volume = {1},
year = {1984},
}

TY - JOUR
AU - Di Benedetto, E.
AU - Trudinger, Neil S.
TI - Harnack inequalities for quasi-minima of variational integrals
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1984
PB - Gauthier-Villars
VL - 1
IS - 4
SP - 295
EP - 308
LA - eng
KW - quasi-minima; Harnack inequality; De Giorgi classes; quasilinear elliptic equations; weak solutions
UR - http://eudml.org/doc/78076
ER -

References

top
  1. [1] E. De Giorgi, Sulla differenziabilità e l'analiticità degli integrali multipli regolari, Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. (3), t. 3, 1957, p. 25-43. Zbl0084.31901MR93649
  2. [2] M. Giaquinta and E. Giusti, Quasi-Minima, Ann. d'Inst. Henri Poincaré, Analyse Non Linéaire, t. 1, 1984, p. 79 à 107. Zbl0541.49008MR778969
  3. [3] M. Giaquinta and E. Giusti, On the regularity of the minima of variational integrals, Acta Math., t. 148, 1982, p. 31-46. Zbl0494.49031MR666107
  4. [4] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. 2nd Ed. Springer-Verlag, New York, 1983. Zbl0562.35001MR737190
  5. [5] O.A. Ladyzenskaya and N.N. Uralt'zeva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968. Zbl0164.13002MR244627
  6. [6] N.V. Krylov, M.V. Safonov, Certain properties of Solutions of parabolic equations with measurable coefficients. Izvestia Akad. Nauk SSSR, t. 40, 1980, p. 161-175, English transl. Math. USSR Izv., t. 16, 1981. Zbl0464.35035MR563790
  7. [7] C.B. Morrey, Multiple integrals in the Calculus of Variations. Springer-Verlag, New York, 1966. Zbl0142.38701MR202511
  8. [8] J. Moser, A new proof of de Giorgi's theorem concerning the regularity problem for elliptic differential equations. Comm. Pure Appl. Math., t. 13, 1960, p. 457- 468. Zbl0111.09301MR170091
  9. [9] J. Moser, On Harnack's theorem for elliptic differential equations. Comm. Pure Appl. Math., t. 14, 1961, p. 577-591. Zbl0111.09302MR159138
  10. [10] J. Serrin, Local behavior of solutions of quasi-linear elliptic equations. Acta Math., t. 111, 1964, p. 247-302. Zbl0128.09101MR170096
  11. [11] N.S. Trudinger, On Harnack type inequalities and their application to quasi-linear elliptic equations. Comm. Pure Appl. Math., t. 20, 1967, p. 721-747. Zbl0153.42703MR226198
  12. [12] N.S. Trudinger, Local estimates for subsolutions and supersolutions of general second order elliptic quasilinear equations. Inventiones Math., t. 61, 1980, p. 67-69. Zbl0453.35028MR587334

Citations in EuDML Documents

top
  1. Tuomo Kuusi, Harnack estimates for weak supersolutions to nonlinear degenerate parabolic equations
  2. G. Barles, Remarks on uniqueness results of the first eigenvalue of the p-Laplacian
  3. Jürgen Moser, Minimal solutions of variational problems on a torus
  4. B. Franchi, R. Serapioni, Pointwise estimates for a class of strongly degenerate elliptic operators : a geometrical approach
  5. Silvana Marchi, A Wiener type criterion for weighted quasiminima
  6. J. Kinnunen, M. Kotilainen, V. Latvala, Hardy-Littlewood Type Gradient Estimates for Quasiminimizers
  7. Vittorio Scornazzani, Pointwise estimates for minimizers of some non-uniformly degenerate functionals
  8. Alberto Fiorenza, Miroslav Krbec, Indices of Orlicz spaces and some applications
  9. Gary Lieberman, On the natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva
  10. Mariano Giaquinta, Giuseppe Modica, Partial regularity of minimizers of quasiconvex integrals

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.