On a non linear partial differential equation having natural growth terms and unbounded solution
A. Bensoussan; L. Boccardo; F. Murat
Annales de l'I.H.P. Analyse non linéaire (1988)
- Volume: 5, Issue: 4, page 347-364
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBensoussan, A., Boccardo, L., and Murat, F.. "On a non linear partial differential equation having natural growth terms and unbounded solution." Annales de l'I.H.P. Analyse non linéaire 5.4 (1988): 347-364. <http://eudml.org/doc/78157>.
@article{Bensoussan1988,
author = {Bensoussan, A., Boccardo, L., Murat, F.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {unbounded solutions},
language = {eng},
number = {4},
pages = {347-364},
publisher = {Gauthier-Villars},
title = {On a non linear partial differential equation having natural growth terms and unbounded solution},
url = {http://eudml.org/doc/78157},
volume = {5},
year = {1988},
}
TY - JOUR
AU - Bensoussan, A.
AU - Boccardo, L.
AU - Murat, F.
TI - On a non linear partial differential equation having natural growth terms and unbounded solution
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1988
PB - Gauthier-Villars
VL - 5
IS - 4
SP - 347
EP - 364
LA - eng
KW - unbounded solutions
UR - http://eudml.org/doc/78157
ER -
References
top- [1] H. Amann and M.G. Crandall, On Some Existence Theorems for Semi Linear Elliptic Equations, Indiana Univ. Math. J., Vol. 27, 1978, pp. 779-790. Zbl0391.35030MR503713
- [2] A. Bensoussan and J. Frehse, Nonlinear Elliptic Systems in Stochastic Game Theory, J. Reine Ang. Math., Vol. 350, 1984, pp. 23-67. Zbl0531.93052MR743532
- [3] A. Bensoussan, J. Frehse and U. Mosco, A Stochastic Impulse Control Problem with Quadratic Growth Hamiltonian and the Corresponding Quasi Variational Inequality, J. Reine Ang. Math., Vol. 331, 1982, pp. 124-145. Zbl0474.49013MR647377
- [4] L. Boccardo and D. Giachetti, Strongly Non Linear Unilateral Problems, Appl. Mat. Opt., Vol. 9, 1983, pp. 291-301. Zbl0535.49010MR687723
- [5] L. Boccardo and D. Giachetti, Alcune osservazioni sulla regolarità delle soluzioni di problemi fortemente non lineari e applicazioni, Ricerche di Matematica, Vol. 34, 1985, pp. 309-323. Zbl0627.35034MR870828
- [6] L. Boccardo, D. Giachetti and F. Murat, On a Generalization of a Theorem of Brezis-Browder, 1984, unpublished.
- [7] L. Boccardo, F. Murat and J.P. Puel, Existence de solutions non bornées pour certaines équations quasi-linéaires, Portugaliae Math., Vol. 41, 1982, pp. 507-534. Zbl0524.35041MR766873
- [8] L. Boccardo, F. Murat and J.P. Puel, Existence de solutions faibles pour des équations elliptiques quasi-linéaires à croissance quadratique, Nonlinear Partial Differ ential Equations and Their Applications, Collège de France Seminar, Vol. IV, J. L. LIONS and H. BREZIS Eds., Research Notes in Mathematics, No. 84, Pitman, London, 1983, pp. 19-73. Zbl0588.35041MR716511
- [9] L. Boccardo, F. Murat and J.P. Puel, Résultats d'existence pour certains problèmes elliptiques quasi-linéaires, Ann. Sc. Norm. Sup. Pisa, Vol. 11, 1984, pp. 213-235. Zbl0557.35051MR764943
- [10] L. Boccardo, F. Murat and J.P. Puel, Existence of Bounded Solutions for Non Linear Elliptic Unilateral Problems, Annali di Mat. Pura Appl., (to appear). Zbl0687.35042
- [11] H. Brezis and F.E. Browder, Some Properties of Higher Order Sobolev Spaces, J. Math. Pures Appl., Vol. 61, 1982, pp. 245-259. Zbl0512.46034MR690395
- [12] F.E. Browder, Existence Theorems for Non Linear Partial Differential Equations, Proceedings of Symposia in Pure Mathematics, Vol. 16, S. S. CHERN and S. SMALE Eds., A.M.S., Providence, 1970, pp. 1-60. Zbl0211.17204MR269962
- [13] T. Del Vecchio, Strongly Non Linear Problems with Gradient Dependent Lower Order Non Linearity, Nonlinear Anal.T.M.A., Vol. 11, 1987, pp. 5-15. Zbl0631.35031MR872037
- [14] J. Frehse, A Refinement of Rellich's Theorem, Rendiconti di Matematica, (to appear). Zbl0666.46041
- [15] P. Hess, Variational Inequalities for Strongly Non Linear Elliptic Operators, J. Math. Pures Appl., Vol. 52, 1973, pp. 285-298. Zbl0259.47050MR336057
- [16] R. Landes, Solvability of Perturbated Elliptic Equations with Critical Growth Exponent for the Gradient, Preprint. Zbl0691.35038MR991927
- [17] J. Leray and J.L. Lions, Quelques résultats de Visik sur les problèmes elliptiques non linéaires par la méthode de Minty-Browder, Bull. Soc. Math. France, Vol. 93, 1965, pp. 97-107. Zbl0132.10502MR194733
- [18] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969. Zbl0189.40603MR259693
- [19] J.M. Rakotoson and R. Temam, Relative Rearrangement in Quasilinear Variational Inequalities, Indiana Univ. Math. J., 36, 1987, pp. 757-810. MR916743
- [20] J.R.L. Webb, Boundary Value Problems for Strongly Non Linear Elliptic Equations, J. London Math. Soc., Vol. 21, 1980, pp. 123-132. Zbl0438.35029MR576188
Citations in EuDML Documents
top- Rüdiger Landes, Vesa Mustonen, On parabolic initial-boundary value problems with critical growth for the gradient
- Guy Barles, Alain-Philippe Blanc, Christine Georgelin, Magdalena Kobylanski, Remarks on the maximum principle for nonlinear elliptic PDEs with quadratic growth conditions
- Aomar Anane, Omar Chakrone, Jean-Pierre Gossez, Spectre d'ordre supérieur et problèmes aux limites quasi-linéaires
- Youssef Akdim, Elhoussine Azroul, Abdelmoujib Benkirane, Existence of Solution for Quasilinear Degenerated Elliptic Unilateral Problems
- N. Alaa, I. Mounir, Weak solutions for some reaction-diffusion systems with balance law and critical growth with respect to the gradient
- François Murat, Homogenization of renormalized solutions of elliptic equations
- Lucio Boccardo, Luigi Orsina, Existence and regularity of minima for integral functionals noncoercive in the energy space
- Lucio Boccardo, Positive solutions for some quasilinear elliptic equations with natural growths
- Salvatore Bonafede, Hölder continuity of bounded generalized solutions for some degenerated quasilinear elliptic equations with natural growth terms
- Louis Jeanjean, Marco Squassina, Existence and symmetry of least energy solutions for a class of quasi-linear elliptic equations
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.