Nonuniqueness for the heat flow of harmonic maps

J.-M. Coron

Annales de l'I.H.P. Analyse non linéaire (1990)

  • Volume: 7, Issue: 4, page 335-344
  • ISSN: 0294-1449

How to cite

top

Coron, J.-M.. "Nonuniqueness for the heat flow of harmonic maps." Annales de l'I.H.P. Analyse non linéaire 7.4 (1990): 335-344. <http://eudml.org/doc/78227>.

@article{Coron1990,
author = {Coron, J.-M.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {heat flow; evolution; harmonic maps},
language = {eng},
number = {4},
pages = {335-344},
publisher = {Gauthier-Villars},
title = {Nonuniqueness for the heat flow of harmonic maps},
url = {http://eudml.org/doc/78227},
volume = {7},
year = {1990},
}

TY - JOUR
AU - Coron, J.-M.
TI - Nonuniqueness for the heat flow of harmonic maps
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1990
PB - Gauthier-Villars
VL - 7
IS - 4
SP - 335
EP - 344
LA - eng
KW - heat flow; evolution; harmonic maps
UR - http://eudml.org/doc/78227
ER -

References

top
  1. [1] H. Brezis, J.M. Coron and E.H. Lieb, Harmonic maps with defects, Comm. Math. Phys., t. 107, 1986, p. 649-705. Zbl0608.58016MR868739
  2. [2] Y. Chen, Weak solutions to the evolution problem for harmonic maps into spheres, preprint, Math. Z., t. 201, 1989, p. 69-74. Zbl0685.58015MR990189
  3. [3] Y. Chen and M. Struwe, Existence and partial regularity results for the heat flow for harmonic maps, Math. Z., t. 201, 1989, p. 83-103. Zbl0652.58024MR990191
  4. [4] R. Cohen, R. Hardt, D. Kinderlehrer, S.Y. Lin and M. Luskin, Minimum energy configurations from liquid crystals: computational results, Theory and Appl. of liquid crystals, I. M. A. Vol. Math. Appl., vol. 5, Springer, 1987, p. 99-122. 
  5. [5] J.M. Coron and J.M. Ghidaglia, Explosion en temps fini pour le flot des applications harmoniques, C. R. Acad. Sci. Paris, t. 308, 1989, p. 339-344. Zbl0679.58017MR992088
  6. [6] J. Eells and J.H. Sampson, Harmonic mappings of Riemannian manifolds, Am. J. Math., t. 86, 1964, p. 109-160. Zbl0122.40102MR164306
  7. [7] R. Hardt, D. Kinderlehrer and F.H. Lin, Stable defects of minimizers of constrained variational principles, Ann. Inst. Henri Poincaré, Analyse Non Linéaire, t. 5, 1988, p. 297-322. Zbl0657.49018MR963102
  8. [8] J. Keller, J. Rubinstein and P. Sternberg, Reaction diffusion processes and evolution to harmonic maps, preprint, 1988. Zbl0702.35128MR1025956
  9. [9] P. Price, A monotonicity formula for Yang-Mills fields, Manuscripta Math., t. 43, 1983, p. 131-166. Vol. 7, n° 4-1990. Zbl0521.58024MR707042
  10. [10] M. Struwe, On the evolution of harmonic maps in higher dimension, J. Diff. Geom., t. 28, 1988, p. 485-502. Zbl0631.58004MR965226
  11. [11] M. Struwe, On the evolution of harmonic maps of Riemannian surfaces, Comm. Math. Helv., t.60 , 1985, p. 558-581. Zbl0595.58013MR826871

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.