Biting theorems for jacobians and their applications

K. Zhang

Annales de l'I.H.P. Analyse non linéaire (1990)

  • Volume: 7, Issue: 4, page 345-365
  • ISSN: 0294-1449

How to cite

top

Zhang, K.. "Biting theorems for jacobians and their applications." Annales de l'I.H.P. Analyse non linéaire 7.4 (1990): 345-365. <http://eudml.org/doc/78228>.

@article{Zhang1990,
author = {Zhang, K.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {div-curl lemma; Weak continuity; Jacobians; Biting lemma; rank-one connections; phase transitions},
language = {eng},
number = {4},
pages = {345-365},
publisher = {Gauthier-Villars},
title = {Biting theorems for jacobians and their applications},
url = {http://eudml.org/doc/78228},
volume = {7},
year = {1990},
}

TY - JOUR
AU - Zhang, K.
TI - Biting theorems for jacobians and their applications
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1990
PB - Gauthier-Villars
VL - 7
IS - 4
SP - 345
EP - 365
LA - eng
KW - div-curl lemma; Weak continuity; Jacobians; Biting lemma; rank-one connections; phase transitions
UR - http://eudml.org/doc/78228
ER -

References

top
  1. [1] E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations, Arch. Ratio. Mech. Anal., t. 86, 1984, p. 125-145. Zbl0565.49010MR751305
  2. [2] E. Acerbi and N. Fusco, An approximation lemma for W1,p functions, in Material Instabilities in Continuum Mechanics (edited by J. M. Ball), Oxford University Press, 1988. Zbl0644.46026MR970512
  3. [3] R.M. Adams, Sobolev Spaces, Academic Press, New York, 1975. Zbl0314.46030
  4. [4] E.J. Balder, More on Fatou's lemma in several dimensions, Canadian Math. bull., t. 30, 1987, p. 334-339. Zbl0625.28003MR906356
  5. [5] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ratio. Mech. Anal., t. 63, 1977, p. 337-403. Zbl0368.73040MR475169
  6. [6] J.M. Ball, Constitutive inequalities and existence theorems in nonlinear elasticity, in Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, vol. 1 (edited by R. J. Knops), Pitman, London, 1977. Zbl0377.73043MR478899
  7. [7] J.M. Ball, J.C. Currie and P.J. Olver, Null Lagrangians, weak continuity and variational problems of arbitrary order, J. Funct. Anal., t. 41, 1981, p. 135-174. Zbl0459.35020MR615159
  8. [8] J.M. Ball and R.D. James, Fine phase mixtures as minimizers of energy, Arch. Ratio. Mech. Anal., t. 100, 1987, p. 13-52. Zbl0629.49020MR906132
  9. [9] J.M. Ball and F. Murat, W1,p-Quasiconvexity and variational problems for multiple integrals, J. Funct. Anal., t. 58, 1984, p. 225-253. Zbl0549.46019MR759098
  10. [10] J.M. Ball and F. Murat, Remarks on Chacon's biting lemma, ESCP Mathematical Problems in Nonlinear Mechanics, Preprint series 14, 1988. 
  11. [11] J.M. Ball and K. Zhang, Remarks on semicontinuity problems in the calculus of variations and related topics, in preparation. 
  12. [12] A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam, 1978. Zbl0404.35001MR503330
  13. [13] J.K. Brooks and R.V. Chacon, Continuity and compactness of measures, Adv. Math., t. 37, 1980, p. 16-26. Zbl0463.28003MR585896
  14. [14] M. Chipot and D. Kinderlehrer, Equilibrium configurations of crystals, Arch. Ratio. Mech. Anal., t. 103, 1988, p. 237-277. Zbl0673.73012MR955934
  15. [15] P.G. Ciarlet, Lectures on Three-Dimensional Elasticity, Springer-Verlag, 1983. Zbl0542.73046MR730027
  16. [16] G. Eisen, A selection lemma for sequences of measurable sets and lower semicontinuity of multiple integrals, Manuscripta Math, t. 27, 1979, p. 73-79. Zbl0404.28004MR524978
  17. [17] I. Ekeland and R. Temam, Analyse Convexe et Problèmes Variationnels, Dunod, Paris, 1974. Zbl0281.49001MR463993
  18. [18] M. Giaquinta, G. Modica and J. Souček, Cartesian currents, weak diffeomorphisms and nonlinear elasticity, Preprint, 1988. Zbl0677.73014MR1645086
  19. [19] D. Kinderlehrer, Remarks about equilibrium configurations of crystals, Material Instabilities in Continuum Mechanics (edited by J. M. Ball), Oxford University Press, 1988. Zbl0850.73037MR970527
  20. [20] P. Lin, Maximization of the entropy for an elastic body free of surface traction, to appear. 
  21. [21] S. Müller, Weak continuity of determinants and nonlinear elasticity, C. R. Acad. Sci. Paris, t. 307, série I, 1988, p. 501-506. Zbl0679.34051MR964116
  22. [22] F. Murat, Compacité par compensation, Ann. Sc. Norm. Sup. Pisa, t. 5, 1978, p. 489-507. Zbl0399.46022MR506997
  23. [23] F. Murat, A survey on compensated compactness, in Contributions to modern Calculus of Variations (edited by L. Cesari), Longman, 1987. MR894077
  24. [24] J. Necăs, Introduction to the Theory of nonlinear Elliptic Equations, John Wiley and Sons press, 1986. Zbl0643.35001MR874752
  25. [25] J. Von Neumann, Functional Operators, Volume I: Measures and Integrals, Princeton University Press, Princeton, 1950. Zbl0039.28401MR32011
  26. [26] Y.G. Reshetnyak, On the stability of conformal mappings in multidimensional spaces, Siberian Math. J., t. 8, 1967, p. 69-85. Zbl0172.37801
  27. [27] Y.G. Reshetnyak, Stability theorems for mappings with bounded excursion, Siberian Math. J., t. 9, 1968, p. 499-512. Zbl0176.03503
  28. [28] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970. Zbl0207.13501MR290095
  29. [29] L. Tartar, Compensated compactness and applications to partial differential equations, inNonlinear Analysis and Mechanics: Heriot-Watt Symposium (edited by R. J. Knops), t. IV, 1979, p. 136-212. Zbl0437.35004MR584398

Citations in EuDML Documents

top
  1. Qi Tang, Kewei Zhang, An evolutionary double-well problem
  2. S. Müller, Tang Qi, B. S. Yan, On a new class of elastic deformations not allowing for cavitation
  3. Agnieszka Kałamajska, On lower semicontinuity of multiple integrals
  4. Baisheng Yan, Remarks on W 1 , p -stability of the conformal set in higher dimensions
  5. Lars Diening, Josef Málek, Mark Steinhauer, On Lipschitz truncations of Sobolev functions (with variable exponent) and their selected applications
  6. Aline Bonami, Tadeusz Iwaniec, Peter Jones, Michel Zinsmeister, On the Product of Functions in and 1
  7. Krzysztof Chełmiński, Agnieszka Kałamajska, New convexity conditions in the calculus of variations and compensated compactness theory
  8. Krzysztof Chełmiński, Agnieszka Kałamajska, New convexity conditions in the calculus of variations and compensated compactness theory

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.