Biting theorems for jacobians and their applications
Annales de l'I.H.P. Analyse non linéaire (1990)
- Volume: 7, Issue: 4, page 345-365
- ISSN: 0294-1449
Access Full Article
topHow to cite
topZhang, K.. "Biting theorems for jacobians and their applications." Annales de l'I.H.P. Analyse non linéaire 7.4 (1990): 345-365. <http://eudml.org/doc/78228>.
@article{Zhang1990,
author = {Zhang, K.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {div-curl lemma; Weak continuity; Jacobians; Biting lemma; rank-one connections; phase transitions},
language = {eng},
number = {4},
pages = {345-365},
publisher = {Gauthier-Villars},
title = {Biting theorems for jacobians and their applications},
url = {http://eudml.org/doc/78228},
volume = {7},
year = {1990},
}
TY - JOUR
AU - Zhang, K.
TI - Biting theorems for jacobians and their applications
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1990
PB - Gauthier-Villars
VL - 7
IS - 4
SP - 345
EP - 365
LA - eng
KW - div-curl lemma; Weak continuity; Jacobians; Biting lemma; rank-one connections; phase transitions
UR - http://eudml.org/doc/78228
ER -
References
top- [1] E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations, Arch. Ratio. Mech. Anal., t. 86, 1984, p. 125-145. Zbl0565.49010MR751305
- [2] E. Acerbi and N. Fusco, An approximation lemma for W1,p functions, in Material Instabilities in Continuum Mechanics (edited by J. M. Ball), Oxford University Press, 1988. Zbl0644.46026MR970512
- [3] R.M. Adams, Sobolev Spaces, Academic Press, New York, 1975. Zbl0314.46030
- [4] E.J. Balder, More on Fatou's lemma in several dimensions, Canadian Math. bull., t. 30, 1987, p. 334-339. Zbl0625.28003MR906356
- [5] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ratio. Mech. Anal., t. 63, 1977, p. 337-403. Zbl0368.73040MR475169
- [6] J.M. Ball, Constitutive inequalities and existence theorems in nonlinear elasticity, in Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, vol. 1 (edited by R. J. Knops), Pitman, London, 1977. Zbl0377.73043MR478899
- [7] J.M. Ball, J.C. Currie and P.J. Olver, Null Lagrangians, weak continuity and variational problems of arbitrary order, J. Funct. Anal., t. 41, 1981, p. 135-174. Zbl0459.35020MR615159
- [8] J.M. Ball and R.D. James, Fine phase mixtures as minimizers of energy, Arch. Ratio. Mech. Anal., t. 100, 1987, p. 13-52. Zbl0629.49020MR906132
- [9] J.M. Ball and F. Murat, W1,p-Quasiconvexity and variational problems for multiple integrals, J. Funct. Anal., t. 58, 1984, p. 225-253. Zbl0549.46019MR759098
- [10] J.M. Ball and F. Murat, Remarks on Chacon's biting lemma, ESCP Mathematical Problems in Nonlinear Mechanics, Preprint series 14, 1988.
- [11] J.M. Ball and K. Zhang, Remarks on semicontinuity problems in the calculus of variations and related topics, in preparation.
- [12] A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam, 1978. Zbl0404.35001MR503330
- [13] J.K. Brooks and R.V. Chacon, Continuity and compactness of measures, Adv. Math., t. 37, 1980, p. 16-26. Zbl0463.28003MR585896
- [14] M. Chipot and D. Kinderlehrer, Equilibrium configurations of crystals, Arch. Ratio. Mech. Anal., t. 103, 1988, p. 237-277. Zbl0673.73012MR955934
- [15] P.G. Ciarlet, Lectures on Three-Dimensional Elasticity, Springer-Verlag, 1983. Zbl0542.73046MR730027
- [16] G. Eisen, A selection lemma for sequences of measurable sets and lower semicontinuity of multiple integrals, Manuscripta Math, t. 27, 1979, p. 73-79. Zbl0404.28004MR524978
- [17] I. Ekeland and R. Temam, Analyse Convexe et Problèmes Variationnels, Dunod, Paris, 1974. Zbl0281.49001MR463993
- [18] M. Giaquinta, G. Modica and J. Souček, Cartesian currents, weak diffeomorphisms and nonlinear elasticity, Preprint, 1988. Zbl0677.73014MR1645086
- [19] D. Kinderlehrer, Remarks about equilibrium configurations of crystals, Material Instabilities in Continuum Mechanics (edited by J. M. Ball), Oxford University Press, 1988. Zbl0850.73037MR970527
- [20] P. Lin, Maximization of the entropy for an elastic body free of surface traction, to appear.
- [21] S. Müller, Weak continuity of determinants and nonlinear elasticity, C. R. Acad. Sci. Paris, t. 307, série I, 1988, p. 501-506. Zbl0679.34051MR964116
- [22] F. Murat, Compacité par compensation, Ann. Sc. Norm. Sup. Pisa, t. 5, 1978, p. 489-507. Zbl0399.46022MR506997
- [23] F. Murat, A survey on compensated compactness, in Contributions to modern Calculus of Variations (edited by L. Cesari), Longman, 1987. MR894077
- [24] J. Necăs, Introduction to the Theory of nonlinear Elliptic Equations, John Wiley and Sons press, 1986. Zbl0643.35001MR874752
- [25] J. Von Neumann, Functional Operators, Volume I: Measures and Integrals, Princeton University Press, Princeton, 1950. Zbl0039.28401MR32011
- [26] Y.G. Reshetnyak, On the stability of conformal mappings in multidimensional spaces, Siberian Math. J., t. 8, 1967, p. 69-85. Zbl0172.37801
- [27] Y.G. Reshetnyak, Stability theorems for mappings with bounded excursion, Siberian Math. J., t. 9, 1968, p. 499-512. Zbl0176.03503
- [28] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970. Zbl0207.13501MR290095
- [29] L. Tartar, Compensated compactness and applications to partial differential equations, inNonlinear Analysis and Mechanics: Heriot-Watt Symposium (edited by R. J. Knops), t. IV, 1979, p. 136-212. Zbl0437.35004MR584398
Citations in EuDML Documents
top- Qi Tang, Kewei Zhang, An evolutionary double-well problem
- S. Müller, Tang Qi, B. S. Yan, On a new class of elastic deformations not allowing for cavitation
- Agnieszka Kałamajska, On lower semicontinuity of multiple integrals
- Baisheng Yan, Remarks on -stability of the conformal set in higher dimensions
- Lars Diening, Josef Málek, Mark Steinhauer, On Lipschitz truncations of Sobolev functions (with variable exponent) and their selected applications
- Aline Bonami, Tadeusz Iwaniec, Peter Jones, Michel Zinsmeister, On the Product of Functions in and
- Krzysztof Chełmiński, Agnieszka Kałamajska, New convexity conditions in the calculus of variations and compensated compactness theory
- Krzysztof Chełmiński, Agnieszka Kałamajska, New convexity conditions in the calculus of variations and compensated compactness theory
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.