Blow-up behaviour of one-dimensional semilinear parabolic equations

M. A. Herrero; J. J. L. Velázquez

Annales de l'I.H.P. Analyse non linéaire (1993)

  • Volume: 10, Issue: 2, page 131-189
  • ISSN: 0294-1449

How to cite

top

Herrero, M. A., and Velázquez, J. J. L.. "Blow-up behaviour of one-dimensional semilinear parabolic equations." Annales de l'I.H.P. Analyse non linéaire 10.2 (1993): 131-189. <http://eudml.org/doc/78299>.

@article{Herrero1993,
author = {Herrero, M. A., Velázquez, J. J. L.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {blow-up; one-dimensional semilinear parabolic equations},
language = {eng},
number = {2},
pages = {131-189},
publisher = {Gauthier-Villars},
title = {Blow-up behaviour of one-dimensional semilinear parabolic equations},
url = {http://eudml.org/doc/78299},
volume = {10},
year = {1993},
}

TY - JOUR
AU - Herrero, M. A.
AU - Velázquez, J. J. L.
TI - Blow-up behaviour of one-dimensional semilinear parabolic equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1993
PB - Gauthier-Villars
VL - 10
IS - 2
SP - 131
EP - 189
LA - eng
KW - blow-up; one-dimensional semilinear parabolic equations
UR - http://eudml.org/doc/78299
ER -

References

top
  1. [A] S. Angenent, The Zero Set of a Solution of a Parabolic Equation, J. reine angew Math., Vol. 390, 1988, pp. 79-96. Zbl0644.35050MR953678
  2. [AF] S.B. Angenent and B. Fiedler, The Dynamics of Rotating Waves in Scalar Reaction-Diffusion Equations, Trans. Amer. Math. Soc., Vol. 307, 1988, pp. 545-568. Zbl0696.35086MR940217
  3. [AW] D.G. Aronson and H.F. Weinberger, Multidimensional Nonlinear Diffusion arising in Population Genetics, Advances in Math., Vol. 30, 1978, pp. 33-76. Zbl0407.92014MR511740
  4. [BBE] J. Bebernes, A. Bressan and D. Eberly, A Description of Blow-up for the Solid Fuel Ignition Model, Indiana Univ. Math. J., Vol. 36, 1987, pp. 131-136. 
  5. [B] A. Bressan, On the Asymptotic Shape of Blow-up, Indiana Univ. Math. J., Vol. 39, 1990, pp. 947-960. Zbl0798.35020MR1087180
  6. [CMV] X.Y. Chen, H. Matano and L. Veron, Anisotropic Singularities of Solutions of Nonlinear Elliptic Equations in R2, J. Funct. Anal., Vol. 83, 1989, pp. 50-93. Zbl0687.35020MR993442
  7. [CL] P.J. Cohen and M. Lees, Asymptotic decay of Differential Inequalities, Pacific J. Math, Vol. 11, 1961, pp. 1235-1249. Zbl0171.35002MR133601
  8. [D] J. Dold, Analysis of the Early Stage of Thermal Runaway, Quart. J. Mech. Appl. Math., Vol. 38, 1985, pp. 361-387. Zbl0569.76079
  9. [FH] A. Friedman and J.B. McLeod, Blow-up of positive Solutions of Semilinear Heat Equations, Indiana Univ. Math. J., Vol. 34, 1985, pp. 425-447. Zbl0576.35068MR783924
  10. [Fu] H. Fujita, On the Blowing-up of Solutions of the Cauchy Problem for ut = Δu + u1+α, J. Fac. Sci. Univ. of Tokio, Section I, Vol. 13, 1966, pp. 109-124. Zbl0163.34002MR214914
  11. [GHV] V.A. Galaktionov, M.A. Herrero and J.J.L. Velázquez, The Space Structure near a Blow-up Point for Semilinear Heat Equations: a formal Approach, Soviet J. Comput. Math. and Math. Physics, Vol. 31, 1991, pp. 399-411. Zbl0747.35014MR1107061
  12. [GP] V.A. Galakationov and S.A. Posashkov, Application of new Comparison Theorems in the Investigation of Unbounded Solutions of nonlinear Parabolic Equations, Diff. Urav., Vol. 22, 7, 1986, pp. 1165-1173. Zbl0632.35028MR853803
  13. [GK1] Y. Giga and R.V. Kohn, Asymptotically Self-Similar Blow-up of Semilinear Heat Equations, Comm. Pure Appl. Math., Vol. 38, 1985, pp. 297-319. Zbl0585.35051MR784476
  14. [GK2] Y. Giga and R.V. Kohn, Characterizing Blow-up using Similarity Variables, Indiana Univ. Math., J., Vol. 36, 1987, pp. 1-40. Zbl0601.35052MR876989
  15. [GK3] Y. Giga and R.V. Kohn, Nondegeneracy of Blow-up for Semilinear Heat Equations, Comm. Pure Appl. Math., Vol. 42, 1989, pp. 845-884. Zbl0703.35020MR1003437
  16. [H] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer Lecture Notes in Mathematics No. 840, 1981. Zbl0456.35001MR610244
  17. [HV1] M.A. Herrero and J.J.L. Velázquez, Flat Blow-up in One-Dimensional Semilinear Heat Equations, Differential and Integral Equations, Vol. 5, 1992, pp. 973-997. Zbl0767.35036MR1171974
  18. [L] A. A. LACEY, The Form of Blow-up for Nonlinear Parabolic Equations, Proc. Royal Soc. Edinburgh, Vol. 98 A, 1984, pp. 183-202. Zbl0556.35077MR765494
  19. [La] P.D. Lax, A Stability Theorem for Solutions of Abstract Differential Equations, and its Application to the Study of the Local behaviour of Solutions of Elliptic Equations, Comm. Pure Appl. Math, Vol. 9, 1956, pp. 747-766. Zbl0072.33004MR86991
  20. [Li] W. Liu, The Blow-up Rate of Solutions of Semilinear Heat Equations, J. Diff. Equations Vol. 77, 1989, pp. 104-122. Zbl0672.35035MR980545
  21. [MW] C.E. Müller and F.B. Weissler, Single Point Blow-up for a General Semilinear Heat Equation, Indiana Univ. Math., J., Vol. 34, 1983, pp. 881-913. Zbl0597.35057MR808833
  22. [W] F.B. Weissler, Single Point Blow-up of Semilinear Initial Value Problems, J. Diff. Equations, Vol. 55, 1984, pp. 204-224. Zbl0555.35061MR764124
  23. [Wa] N.A. Watson, Parabolic Equations on an Infinite Strip, Monographs and Textbooks inPure and Applied Mathematics, Vol. 127, Marcel Dekker, 1988. Zbl0675.35001MR988890
  24. [Wi] D.V. Widder, The Heat Equation, Academic Press, New York, 1975. Zbl0322.35041MR466967

Citations in EuDML Documents

top
  1. Hatem Zaag, Blow-up results for vector-valued nonlinear heat equations with no gradient structure
  2. Stathis Filippas, Wenxiong Liu, On the blowup of multidimensional semilinear heat equations
  3. Hatem Zaag, On the regularity of the blow-up set for semilinear heat equations
  4. Luis Herraiz, Asymptotic behaviour of solutions of some semilinear parabolic problems
  5. M. A. Herrero, J. J. L. Velázquez, Generic behaviour of one-dimensional blow up patterns
  6. D. Andreucci, M. A. Herrero, J. J. L. Velázquez, Liouville theorems and blow up behaviour in semilinear reaction diffusion systems
  7. A. El Soufi, M. Jazar, R. Monneau, A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions
  8. Frank Merle, Hatem Zaag, Estimations uniformes à l’explosion pour les équations de la chaleur non linéaires et applications
  9. Juraj Földes, Liouville theorems, a priori estimates, and blow-up rates for solutions of indefinite superlinear parabolic problems
  10. Thierry Cazenave, Solutions self-similaires de l'équation de Schrödinger non-linéaire

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.