Blow-up behaviour of one-dimensional semilinear parabolic equations
M. A. Herrero; J. J. L. Velázquez
Annales de l'I.H.P. Analyse non linéaire (1993)
- Volume: 10, Issue: 2, page 131-189
- ISSN: 0294-1449
Access Full Article
topHow to cite
topHerrero, M. A., and Velázquez, J. J. L.. "Blow-up behaviour of one-dimensional semilinear parabolic equations." Annales de l'I.H.P. Analyse non linéaire 10.2 (1993): 131-189. <http://eudml.org/doc/78299>.
@article{Herrero1993,
author = {Herrero, M. A., Velázquez, J. J. L.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {blow-up; one-dimensional semilinear parabolic equations},
language = {eng},
number = {2},
pages = {131-189},
publisher = {Gauthier-Villars},
title = {Blow-up behaviour of one-dimensional semilinear parabolic equations},
url = {http://eudml.org/doc/78299},
volume = {10},
year = {1993},
}
TY - JOUR
AU - Herrero, M. A.
AU - Velázquez, J. J. L.
TI - Blow-up behaviour of one-dimensional semilinear parabolic equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1993
PB - Gauthier-Villars
VL - 10
IS - 2
SP - 131
EP - 189
LA - eng
KW - blow-up; one-dimensional semilinear parabolic equations
UR - http://eudml.org/doc/78299
ER -
References
top- [A] S. Angenent, The Zero Set of a Solution of a Parabolic Equation, J. reine angew Math., Vol. 390, 1988, pp. 79-96. Zbl0644.35050MR953678
- [AF] S.B. Angenent and B. Fiedler, The Dynamics of Rotating Waves in Scalar Reaction-Diffusion Equations, Trans. Amer. Math. Soc., Vol. 307, 1988, pp. 545-568. Zbl0696.35086MR940217
- [AW] D.G. Aronson and H.F. Weinberger, Multidimensional Nonlinear Diffusion arising in Population Genetics, Advances in Math., Vol. 30, 1978, pp. 33-76. Zbl0407.92014MR511740
- [BBE] J. Bebernes, A. Bressan and D. Eberly, A Description of Blow-up for the Solid Fuel Ignition Model, Indiana Univ. Math. J., Vol. 36, 1987, pp. 131-136.
- [B] A. Bressan, On the Asymptotic Shape of Blow-up, Indiana Univ. Math. J., Vol. 39, 1990, pp. 947-960. Zbl0798.35020MR1087180
- [CMV] X.Y. Chen, H. Matano and L. Veron, Anisotropic Singularities of Solutions of Nonlinear Elliptic Equations in R2, J. Funct. Anal., Vol. 83, 1989, pp. 50-93. Zbl0687.35020MR993442
- [CL] P.J. Cohen and M. Lees, Asymptotic decay of Differential Inequalities, Pacific J. Math, Vol. 11, 1961, pp. 1235-1249. Zbl0171.35002MR133601
- [D] J. Dold, Analysis of the Early Stage of Thermal Runaway, Quart. J. Mech. Appl. Math., Vol. 38, 1985, pp. 361-387. Zbl0569.76079
- [FH] A. Friedman and J.B. McLeod, Blow-up of positive Solutions of Semilinear Heat Equations, Indiana Univ. Math. J., Vol. 34, 1985, pp. 425-447. Zbl0576.35068MR783924
- [Fu] H. Fujita, On the Blowing-up of Solutions of the Cauchy Problem for ut = Δu + u1+α, J. Fac. Sci. Univ. of Tokio, Section I, Vol. 13, 1966, pp. 109-124. Zbl0163.34002MR214914
- [GHV] V.A. Galaktionov, M.A. Herrero and J.J.L. Velázquez, The Space Structure near a Blow-up Point for Semilinear Heat Equations: a formal Approach, Soviet J. Comput. Math. and Math. Physics, Vol. 31, 1991, pp. 399-411. Zbl0747.35014MR1107061
- [GP] V.A. Galakationov and S.A. Posashkov, Application of new Comparison Theorems in the Investigation of Unbounded Solutions of nonlinear Parabolic Equations, Diff. Urav., Vol. 22, 7, 1986, pp. 1165-1173. Zbl0632.35028MR853803
- [GK1] Y. Giga and R.V. Kohn, Asymptotically Self-Similar Blow-up of Semilinear Heat Equations, Comm. Pure Appl. Math., Vol. 38, 1985, pp. 297-319. Zbl0585.35051MR784476
- [GK2] Y. Giga and R.V. Kohn, Characterizing Blow-up using Similarity Variables, Indiana Univ. Math., J., Vol. 36, 1987, pp. 1-40. Zbl0601.35052MR876989
- [GK3] Y. Giga and R.V. Kohn, Nondegeneracy of Blow-up for Semilinear Heat Equations, Comm. Pure Appl. Math., Vol. 42, 1989, pp. 845-884. Zbl0703.35020MR1003437
- [H] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer Lecture Notes in Mathematics No. 840, 1981. Zbl0456.35001MR610244
- [HV1] M.A. Herrero and J.J.L. Velázquez, Flat Blow-up in One-Dimensional Semilinear Heat Equations, Differential and Integral Equations, Vol. 5, 1992, pp. 973-997. Zbl0767.35036MR1171974
- [L] A. A. LACEY, The Form of Blow-up for Nonlinear Parabolic Equations, Proc. Royal Soc. Edinburgh, Vol. 98 A, 1984, pp. 183-202. Zbl0556.35077MR765494
- [La] P.D. Lax, A Stability Theorem for Solutions of Abstract Differential Equations, and its Application to the Study of the Local behaviour of Solutions of Elliptic Equations, Comm. Pure Appl. Math, Vol. 9, 1956, pp. 747-766. Zbl0072.33004MR86991
- [Li] W. Liu, The Blow-up Rate of Solutions of Semilinear Heat Equations, J. Diff. Equations Vol. 77, 1989, pp. 104-122. Zbl0672.35035MR980545
- [MW] C.E. Müller and F.B. Weissler, Single Point Blow-up for a General Semilinear Heat Equation, Indiana Univ. Math., J., Vol. 34, 1983, pp. 881-913. Zbl0597.35057MR808833
- [W] F.B. Weissler, Single Point Blow-up of Semilinear Initial Value Problems, J. Diff. Equations, Vol. 55, 1984, pp. 204-224. Zbl0555.35061MR764124
- [Wa] N.A. Watson, Parabolic Equations on an Infinite Strip, Monographs and Textbooks inPure and Applied Mathematics, Vol. 127, Marcel Dekker, 1988. Zbl0675.35001MR988890
- [Wi] D.V. Widder, The Heat Equation, Academic Press, New York, 1975. Zbl0322.35041MR466967
Citations in EuDML Documents
top- Hatem Zaag, Blow-up results for vector-valued nonlinear heat equations with no gradient structure
- Stathis Filippas, Wenxiong Liu, On the blowup of multidimensional semilinear heat equations
- Hatem Zaag, On the regularity of the blow-up set for semilinear heat equations
- Luis Herraiz, Asymptotic behaviour of solutions of some semilinear parabolic problems
- M. A. Herrero, J. J. L. Velázquez, Generic behaviour of one-dimensional blow up patterns
- D. Andreucci, M. A. Herrero, J. J. L. Velázquez, Liouville theorems and blow up behaviour in semilinear reaction diffusion systems
- A. El Soufi, M. Jazar, R. Monneau, A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions
- Frank Merle, Hatem Zaag, Estimations uniformes à l’explosion pour les équations de la chaleur non linéaires et applications
- Juraj Földes, Liouville theorems, a priori estimates, and blow-up rates for solutions of indefinite superlinear parabolic problems
- Thierry Cazenave, Solutions self-similaires de l'équation de Schrödinger non-linéaire
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.