On the regularity of edges in image segmentation

A. Bonnet

Annales de l'I.H.P. Analyse non linéaire (1996)

  • Volume: 13, Issue: 4, page 485-528
  • ISSN: 0294-1449

How to cite

top

Bonnet, A.. "On the regularity of edges in image segmentation." Annales de l'I.H.P. Analyse non linéaire 13.4 (1996): 485-528. <http://eudml.org/doc/78389>.

@article{Bonnet1996,
author = {Bonnet, A.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {image segmentation; Mumford-Shah functional; regularity},
language = {eng},
number = {4},
pages = {485-528},
publisher = {Gauthier-Villars},
title = {On the regularity of edges in image segmentation},
url = {http://eudml.org/doc/78389},
volume = {13},
year = {1996},
}

TY - JOUR
AU - Bonnet, A.
TI - On the regularity of edges in image segmentation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1996
PB - Gauthier-Villars
VL - 13
IS - 4
SP - 485
EP - 528
LA - eng
KW - image segmentation; Mumford-Shah functional; regularity
UR - http://eudml.org/doc/78389
ER -

References

top
  1. [1] H.W. Alt, L.A. Caffarelli and A. Friedman, Variational problems with two Phases and their free boundary, Trans. Am. Math. Soc., Vol. 282, 1984, pp. 431-461. Zbl0844.35137MR732100
  2. [2] L. Ambrosio, Existence theory for a new class of variational problems, Arch. Rat. Mech. Anal., Vol. 111, 1990, pp. 291-322. Zbl0711.49064MR1068374
  3. [3] L. Ambrosio and D. Pallara, Partial regularity of free discontinuity sets I, to appear. Zbl0896.49023MR1475771
  4. [4] L. Ambrosio, N. Fusco and D. Pallara, Partial regularity of free discontinuity sets II, to appear. Zbl0896.49024MR1475772
  5. [5] G. Congedo and I. Tamanini, On the existence of solutions to a problem in multidimensional segmentation, Ann. Inst. Henri Poincaré, Vol. 8, 2, 1991, pp. 175-195. Zbl0729.49003MR1096603
  6. [6] G. Dal Maso, J.-M. Morel and S. Solimini, A variational method in image segmentation: existence and approximation results, Acta Matematica, Vol. 168, 1992, pp. 89-151. Zbl0772.49006MR1149865
  7. [7] G. David and S. Semmes, On the singular sets of minimisers of the Mumford-Shah functional, to appear in J. Math. Pures Appl. Zbl0853.49010MR1251061
  8. [8] G. David, C1-arcs for minimisers of the Mumford-Shah functional, to appear. Zbl0870.49020MR1389754
  9. [9] F. Dibos, Uniform rectifiability of image segmentations obtained by a variational method, J. Math. Pures and Appl., Vol. 73, 1994, pp. 389-412. Zbl0860.49030MR1290493
  10. [10] F. Dibos and G. Koepfler, Color segmentation using a variational formulation, preprint CEREMADE. Zbl0779.49004
  11. [11] E. De Giorgi, M. Carriero and A. Leaci, Existence theorem for a minimum problem with free discontinuity set, Arch. Rat. Mech. Anal., Vol. 108, 1989, pp. 195-218. Zbl0682.49002MR1012174
  12. [12] L. Evans and R. Gariepy, Measure theory and fine properties of functions, London: CRC Press, 1992. Zbl0804.28001MR1158660
  13. [13] K.J. Falconer, The geometry of fractal sets, Cambridge University Press, 1985. Zbl0587.28004MR867284
  14. [14] H. Federer, Geometric measure theory, Springer-Verlag, 1969. Zbl0176.00801MR257325
  15. [15] G. Hardy, J.E. Littlewood and G. Pólya, Inequalities Second Edition, Cambridge university Press. Zbl0010.10703MR944909JFM60.0169.01
  16. [16] U. Massari and I. Tamanini, Regularity properties of optimal segmentations, Journ. reine angew. Math., Vol. 420, 1991, pp. 61-84. Zbl0729.49004MR1124566
  17. [17] J.-M. Morel and S. Solimini, Variational methods in Image Segmentation, Birkhauser, 1994. Zbl0827.68111MR1321598
  18. [18] C.B. Morrey Jr., Multiple integrals in the calculus of variations, Springer-Verlag, 1966. Zbl0142.38701MR202511
  19. [19] D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Comm. on Pure and Appl. Math., Vol. XLII, n° 4, 1989. Zbl0691.49036MR997568

Citations in EuDML Documents

top
  1. Antoine Lemenant, On the homogeneity of global minimizers for the Mumford-Shah functional when K is a smooth cone
  2. Benoît Merlet, Numerical study of a new global minimizer for the Mumford-Shah functional in R
  3. Antoine Lemenant, Un théorème de régularité pour les minimiseurs de Mumford-Shah dans 3
  4. Guy David, Jean-Christophe Léger, Monotonicity and separation for the Mumford–Shah problem
  5. Antoine Lemenant, Un théorème de régularité pour les minimiseurs de Mumford-Shah dans 3
  6. Massimiliano Morini, Global calibrations for the non-homogeneous Mumford-Shah functional
  7. Emilio Acerbi, Irene Fonseca, Nicola Fusco, Regularity of minimizers for a class of membrane energies

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.