On the regularity of edges in image segmentation
Annales de l'I.H.P. Analyse non linéaire (1996)
- Volume: 13, Issue: 4, page 485-528
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBonnet, A.. "On the regularity of edges in image segmentation." Annales de l'I.H.P. Analyse non linéaire 13.4 (1996): 485-528. <http://eudml.org/doc/78389>.
@article{Bonnet1996,
author = {Bonnet, A.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {image segmentation; Mumford-Shah functional; regularity},
language = {eng},
number = {4},
pages = {485-528},
publisher = {Gauthier-Villars},
title = {On the regularity of edges in image segmentation},
url = {http://eudml.org/doc/78389},
volume = {13},
year = {1996},
}
TY - JOUR
AU - Bonnet, A.
TI - On the regularity of edges in image segmentation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1996
PB - Gauthier-Villars
VL - 13
IS - 4
SP - 485
EP - 528
LA - eng
KW - image segmentation; Mumford-Shah functional; regularity
UR - http://eudml.org/doc/78389
ER -
References
top- [1] H.W. Alt, L.A. Caffarelli and A. Friedman, Variational problems with two Phases and their free boundary, Trans. Am. Math. Soc., Vol. 282, 1984, pp. 431-461. Zbl0844.35137MR732100
- [2] L. Ambrosio, Existence theory for a new class of variational problems, Arch. Rat. Mech. Anal., Vol. 111, 1990, pp. 291-322. Zbl0711.49064MR1068374
- [3] L. Ambrosio and D. Pallara, Partial regularity of free discontinuity sets I, to appear. Zbl0896.49023MR1475771
- [4] L. Ambrosio, N. Fusco and D. Pallara, Partial regularity of free discontinuity sets II, to appear. Zbl0896.49024MR1475772
- [5] G. Congedo and I. Tamanini, On the existence of solutions to a problem in multidimensional segmentation, Ann. Inst. Henri Poincaré, Vol. 8, 2, 1991, pp. 175-195. Zbl0729.49003MR1096603
- [6] G. Dal Maso, J.-M. Morel and S. Solimini, A variational method in image segmentation: existence and approximation results, Acta Matematica, Vol. 168, 1992, pp. 89-151. Zbl0772.49006MR1149865
- [7] G. David and S. Semmes, On the singular sets of minimisers of the Mumford-Shah functional, to appear in J. Math. Pures Appl. Zbl0853.49010MR1251061
- [8] G. David, C1-arcs for minimisers of the Mumford-Shah functional, to appear. Zbl0870.49020MR1389754
- [9] F. Dibos, Uniform rectifiability of image segmentations obtained by a variational method, J. Math. Pures and Appl., Vol. 73, 1994, pp. 389-412. Zbl0860.49030MR1290493
- [10] F. Dibos and G. Koepfler, Color segmentation using a variational formulation, preprint CEREMADE. Zbl0779.49004
- [11] E. De Giorgi, M. Carriero and A. Leaci, Existence theorem for a minimum problem with free discontinuity set, Arch. Rat. Mech. Anal., Vol. 108, 1989, pp. 195-218. Zbl0682.49002MR1012174
- [12] L. Evans and R. Gariepy, Measure theory and fine properties of functions, London: CRC Press, 1992. Zbl0804.28001MR1158660
- [13] K.J. Falconer, The geometry of fractal sets, Cambridge University Press, 1985. Zbl0587.28004MR867284
- [14] H. Federer, Geometric measure theory, Springer-Verlag, 1969. Zbl0176.00801MR257325
- [15] G. Hardy, J.E. Littlewood and G. Pólya, Inequalities Second Edition, Cambridge university Press. Zbl0010.10703MR944909JFM60.0169.01
- [16] U. Massari and I. Tamanini, Regularity properties of optimal segmentations, Journ. reine angew. Math., Vol. 420, 1991, pp. 61-84. Zbl0729.49004MR1124566
- [17] J.-M. Morel and S. Solimini, Variational methods in Image Segmentation, Birkhauser, 1994. Zbl0827.68111MR1321598
- [18] C.B. Morrey Jr., Multiple integrals in the calculus of variations, Springer-Verlag, 1966. Zbl0142.38701MR202511
- [19] D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Comm. on Pure and Appl. Math., Vol. XLII, n° 4, 1989. Zbl0691.49036MR997568
Citations in EuDML Documents
top- Antoine Lemenant, On the homogeneity of global minimizers for the Mumford-Shah functional when K is a smooth cone
- Benoît Merlet, Numerical study of a new global minimizer for the Mumford-Shah functional in R
- Antoine Lemenant, Un théorème de régularité pour les minimiseurs de Mumford-Shah dans
- Guy David, Jean-Christophe Léger, Monotonicity and separation for the Mumford–Shah problem
- Antoine Lemenant, Un théorème de régularité pour les minimiseurs de Mumford-Shah dans
- Massimiliano Morini, Global calibrations for the non-homogeneous Mumford-Shah functional
- Emilio Acerbi, Irene Fonseca, Nicola Fusco, Regularity of minimizers for a class of membrane energies
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.