Null and approximate controllability for weakly blowing up semilinear heat equations

Enrique Fernández-Cara; Enrique Zuazua

Annales de l'I.H.P. Analyse non linéaire (2000)

  • Volume: 17, Issue: 5, page 583-616
  • ISSN: 0294-1449

How to cite

top

Fernández-Cara, Enrique, and Zuazua, Enrique. "Null and approximate controllability for weakly blowing up semilinear heat equations." Annales de l'I.H.P. Analyse non linéaire 17.5 (2000): 583-616. <http://eudml.org/doc/78502>.

@article{Fernández2000,
author = {Fernández-Cara, Enrique, Zuazua, Enrique},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {semilinear heat equation; controllability},
language = {eng},
number = {5},
pages = {583-616},
publisher = {Gauthier-Villars},
title = {Null and approximate controllability for weakly blowing up semilinear heat equations},
url = {http://eudml.org/doc/78502},
volume = {17},
year = {2000},
}

TY - JOUR
AU - Fernández-Cara, Enrique
AU - Zuazua, Enrique
TI - Null and approximate controllability for weakly blowing up semilinear heat equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2000
PB - Gauthier-Villars
VL - 17
IS - 5
SP - 583
EP - 616
LA - eng
KW - semilinear heat equation; controllability
UR - http://eudml.org/doc/78502
ER -

References

top
  1. [1] Anita S., Barbu V., Internal null controllability of nonlinear heat equation, Preprint, 1999. 
  2. [2] Barbu V., Exact controllability of the superlinear heat equation, Preprint, 1998. MR1751309
  3. [3] Brezis H., Cazenave Th., Martel Y., Ramiandrisoa A., Blow up for ut - Δu = g(u) revisited, Adv. Differential Equations1 (1) (1996) 73-90. Zbl0855.35063MR1357955
  4. [4] Cannarsa P.M., Komornik V., Loreti P., Well posedness and control of the semilinear wave equation with iterated logarithms, ESAIM: COCV (to appear). Zbl0939.35124MR1680689
  5. [5] Cazenave T., Haraux A., Equations d'évolution avec nonlinéarité logarithmique, Ann. Fac. Sci. Toulouse2 (1980) 21-51. Zbl0411.35051MR583902
  6. [6] Cazenave T., Haraux A., Barbu V., Introduction aux Problèmes d'Évolution Semilinéaires, Mathématiques & Applications, Ellipses, Paris, 1989. Zbl0786.35070
  7. [7] Fabre C., Puel J.P., Zuazua E., Approximate controllability of the semilinear heat equation, Proc. Royal Soc. Edinburgh125A (1995) 31-61. Zbl0818.93032MR1318622
  8. [8] Fernández-Cara E., Null controllability of the semilinear heat equation, ESAIM: COCV2 (1997) 87-107. Zbl0897.93011MR1445385
  9. [9] Fernández-Cara E., Zuazua E., The cost of approximate controllability for heat equations: The linear case, Adv. Differential Equations (to appear). Zbl1007.93034MR1750109
  10. [10] Fursikov A., Imanuvilov O.Yu., Controllability of Evolution Equations, Lecture Notes, Vol. 34, Seoul National University, Korea, 1996. Zbl0862.49004MR1406566
  11. [11] Galaktionov V., On blow-up and degeneracy for the semilinear heat equation with source, Proc. Royal Soc. Edinburgh115A (1990) 19-24. Zbl0715.35006MR1059641
  12. [12] Galaktionov V., Vázquez J.L., Regional blow-up in a semilinear heat equation with convergence to a Hamilton-Jacobi equation, SIAM J. Math. Anal24 (5) (1993) 1125-1276. Zbl0813.35033MR1234014
  13. [13] Glass O., Sur la contrôlabilité des fluides parfaits incompressibles, Ph.D. Thesis, Université de Paris XI, Orsay, France, January 2000. 
  14. [14] Henry J., Contrôle d'un réacteur enzymatique à l'aide de modèles à paramètres distribués: Quelques problèmes de contrôlabilité de systèmes paraboliques, Ph.D. Thesis, Université Paris VI, 1978. 
  15. [15] Imanuvilov O.Yu., Exact boundary controllability of the parabolic equation, Russian Math. Surveys48 (1993) 211-212. Zbl0800.93172
  16. [16] Khapalov A., Some aspects of the asymptotic behavior of the solutions of the semilinear heat equation and approximate controllability, J. Math. Anal. Appl.194 (1995) 858-882. Zbl0846.35059MR1350200
  17. [17] Zuazua E., Exact boundary controllability for the semilinear wave equation, in: Brezis H., Lions J.L. (Eds.), Nonlinear Partial Differential Equations and their Applications, Vol. X, Pitman, 1991, pp. 357-391. Zbl0731.93011MR1131832
  18. [18] Zuazua E., Finite dimensional null-controllability of the semilinear heat equation, J. Math. Pures et Appl.76 (1997) 237-264. Zbl0872.93014MR1441986
  19. [19] Zuazua E., Exact controllability for the semilinear wave equation in one space dimension, Ann. IHP, Analyse non Linéaire10 (1996) 109-129. Zbl0769.93017MR1212631

Citations in EuDML Documents

top
  1. Farid Ammar Khodja, Assia Benabdallah, Cédric Dupaix, Ilya Kostin, Null-controllability of some systems of parabolic type by one control force
  2. Karl Kunisch, Lijuan Wang, Time optimal control of the heat equation with pointwise control constraints
  3. Farid Ammar Khodja, Assia Benabdallah, Cédric Dupaix, Ilya Kostin, Null-controllability of some systems of parabolic type by one control force
  4. Sebastian Anita, Viorel Barbu, Null controllability of nonlinear convective heat equations
  5. Sebastian Aniţa, Viorel Barbu, Null controllability of nonlinear convective heat equations
  6. K. Beauchard, E. Zuazua, Some controllability results for the 2D Kolmogorov equation
  7. Kumarasamy Sakthivel, Krishnan Balachandran, Jong-Yeoul Park, Ganeshan Devipriya, Null controllability of a nonlinear diffusion system in reactor dynamics
  8. Enrique Fernández-Cara, Manuel González-Burgos, Sergio Guerrero, Jean-Pierre Puel, Exact controllability to the trajectories of the heat equation with Fourier boundary conditions: the semilinear case
  9. Anna Doubova, A. Osses, J.-P. Puel, Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients
  10. Anna Doubova, A. Osses, J.-P. Puel, Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.