On self-similarity and stationary problem for fragmentation and coagulation models
M. Escobedo; S. Mischler; M. Rodriguez Ricard
Annales de l'I.H.P. Analyse non linéaire (2005)
- Volume: 22, Issue: 1, page 99-125
- ISSN: 0294-1449
Access Full Article
topHow to cite
topEscobedo, M., Mischler, S., and Rodriguez Ricard, M.. "On self-similarity and stationary problem for fragmentation and coagulation models." Annales de l'I.H.P. Analyse non linéaire 22.1 (2005): 99-125. <http://eudml.org/doc/78649>.
@article{Escobedo2005,
author = {Escobedo, M., Mischler, S., Rodriguez Ricard, M.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {equilibrium; no detailed balance condition; Poincaré-Bendixson’s Theory; Tikhonov fixed point theorem; self-similar solutions; uniqueness; existence; convergence to self-similarity},
language = {eng},
number = {1},
pages = {99-125},
publisher = {Elsevier},
title = {On self-similarity and stationary problem for fragmentation and coagulation models},
url = {http://eudml.org/doc/78649},
volume = {22},
year = {2005},
}
TY - JOUR
AU - Escobedo, M.
AU - Mischler, S.
AU - Rodriguez Ricard, M.
TI - On self-similarity and stationary problem for fragmentation and coagulation models
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 1
SP - 99
EP - 125
LA - eng
KW - equilibrium; no detailed balance condition; Poincaré-Bendixson’s Theory; Tikhonov fixed point theorem; self-similar solutions; uniqueness; existence; convergence to self-similarity
UR - http://eudml.org/doc/78649
ER -
References
top- [1] Aldous D.J., Deterministic and stochastic models for coalescence (aggregation, coagulation): a review of the mean-field theory for probabilists, Bernoulli5 (1999) 3-48. Zbl0930.60096MR1673235
- [2] Amann H., Ordinary Differential Equations. An Introduction to Nonlinear Analysis, Translated from the German by Gerhard Metzen, de Gruyter Studies in Mathematics, vol. 13, Walter de Gruyter, Berlin, 1990. Zbl0708.34002MR1071170
- [3] Arlotti L., Banasiak J., Strictly substochastic semigroups with application to conservative and shattering solutions to fragmentation equations with mass loss, J. Math. Anal. Appl.293 (2) (2004) 693-720. Zbl1075.47023MR2053907
- [4] Balabane M., Systèmes différentiels, cours de l'Ecole Nationale des Ponts et Chaussées, 1982. Zbl0481.58005
- [5] N. Ben Abdallah, M. Escobedo, S. Mischler, Convergence to the equilibrium for the Pauli equation without detailed balance condition, in preparation. Zbl1072.35587MR2153383
- [6] Bertoin J., On small masses in self-similar fragmentations, Stochastic Process. Appl.109 (1) (2004) 13-22. Zbl1075.60092MR2024841
- [7] Bertoin J., The asymptotic behavior of fragmentation processes, J. Eur. Math. Soc. (JEMS)5 (4) (2003) 395-416. Zbl1042.60042MR2017852
- [8] Bertoin J., Eternal solutions to Smoluchowski's coagulation equation with additive kernel and their probabilistic interpretations, Ann. Appl. Probab.12 (2) (2002) 547-564. Zbl1030.60036MR1910639
- [9] Bertoin J., Self-similar fragmentations, Ann. Inst. H. Poincaré Probab. Statist.38 (3) (2002) 319-340. Zbl1002.60072MR1899456
- [10] Bertoin J., Homogeneous fragmentation processes, Probab. Theory Related Fields121 (3) (2001) 301-318. Zbl0992.60076MR1867425
- [11] Cazenave T., Haraux A., An Introduction to Semilinear Evolution Equations, Oxford Lecture Series in Mathematics and its Applications, vol. 13, The Clarendon Press, Oxford University Press, New York, 1998. Zbl0926.35049MR1691574
- [12] da Costa F.P., On the dynamic scaling behavior of solutions to the discrete Smoluchowski equations, Proc. Edinburgh Math. Soc.39 (2) (1996) 547-559. Zbl0858.34041MR1417696
- [13] Deaconu M., Tanré E., Smoluchowski's coagulation equation: probabilistic interpretation of solutions for constant, additive and multiplicative kernels, Ann. Scuola Norm. Sup. Pisa Cl. Sci.29 (4) (2000) 549-579. Zbl1072.60071MR1817709
- [14] Derrida B., Godréche C., Yekuitieli I., Scale-invariant regimes in one-dimensional models of growing and coalescing droplets, Phys. Rev. A44 (1991) 6241-6251.
- [15] DiPerna R.J., Lions P.-L., Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math.98 (1989) 707-741. Zbl0696.34049MR1022305
- [16] van Dongen P.G.J., Ernst M.H., Cluster size distribution in irreversible aggregation at large times, J. Phys. A18 (1985) 2779-2793. MR811992
- [17] van Dongen P.G.J., Ernst M.H., Scaling solutions of Smoluchowski's coagulation equation, J. Statist. Phys.50 (1988) 295-329. Zbl0998.65139MR939490
- [18] Drake R.L., A general mathematical survey of the coagulation equation, in: Topics in Current Aerosol Research (part 2), International Reviews in Aerosol Physics and Chemistry, Pergamon Press, Oxford, 1972, pp. 203-376.
- [19] Dubovskiĭ P.B., Stewart I.W., Trend to equilibrium for the coagulation–fragmentation equation, Math. Methods Appl. Sci.19 (1996) 761-772. Zbl0863.45007MR1396951
- [20] Edwards R.E., Functional Analysis, Theory and Applications, Holt, Rinehart and Winston, 1965. Zbl0182.16101MR221256
- [21] Eibeck A., Wagner W., Stochastic particle approximations for Smoluchowski's coagulation equation, Ann. Appl. Probab.11 (2001) 1137-1165. Zbl1021.60086MR1878293
- [22] Escobedo M., Laurençot Ph., Mischler S., Perthame B., Gelation and mass conservation in coagulation–fragmentation models, J. Differential Equations195 (1) (2003) 143-174. Zbl1133.82316MR2019246
- [23] Escobedo M., Mischler S., Perthame B., Gelation in coagulation and fragmentation models, Comm. Math. Phys.231 (2002) 157-188. Zbl1016.82027MR1947695
- [24] Escobedo M., Zuazua E., Large time behavior of the solutions of a convection diffusion equation, J. Funct. Anal.100 (1991) 119-161. Zbl0762.35011MR1124296
- [25] Fournier N., Giet J.-S., On small particles in coagulation–fragmentation equations, J. Statist. Phys.111 (5–6) (2003) 1299-1329. Zbl1018.60061MR1975930
- [26] N. Fournier, S. Mischler, Trend to the equilibrium for the coagulation equation with strong fragmentation but with balance condition, in: Proceedings: Mathematical, Physical and Engineering Sciences, in press. Zbl1170.82349
- [27] N. Fournier, S. Mischler, On a Boltzmann equation for elastic, inelastic and coalescing collisions, preprint, 2003, submitted for publication. Zbl1088.82021
- [28] Gamba I.M., Panferov V., Villani C., On the Boltzmann equation for diffusively excited granular media, Comm. Math. Phys.246 (3) (2004) 503-541. Zbl1106.82031MR2053942
- [29] Haas B., Loss of mass in deterministic and random fragmentations, Stochastic Process. Appl.106 (2) (2003) 245-277. Zbl1075.60553MR1989629
- [30] Kreer M., Penrose O., Proof of dynamical scaling in Smoluchowski's coagulation equation with constant kernel, J. Statist. Phys.75 (1994) 389-407. Zbl0828.60093MR1279758
- [31] Krivitsky D.S., Numerical solution of the Smoluchowski kinetic equation and asymptotics of the distribution function, J. Phys. A28 (1995) 2025-2039. Zbl0830.65143MR1336510
- [32] Ph. Laurençot, Convergence to self-similar solutions for coagulation equation, preprint, 2003.
- [33] Laurençot Ph., Mischler S., From the discrete to the continuous coagulation–fragmentation equations, Proc. Roy. Soc. Edinburgh Sect. A132 (5) (2002) 1219-1248. Zbl1034.35011MR1938720
- [34] Laurençot Ph., Mischler S., The continuous coagulation–fragmentation equations with diffusion, Arch. Rational Mech. Anal.162 (2002) 45-99. Zbl0997.45005MR1892231
- [35] Laurençot Ph., Mischler S., Convergence to equilibrium for the continuous coagulation–fragmentation equation, Bull. Sci. Math.127 (2003) 179-190. Zbl1027.82030MR1988654
- [36] Laurençot P., Mischler S., On coalescence equations and related models, in: Degond P., Pareschi L., Russo G. (Eds.), Modelling and Computational Methods for Kinetic Equations, Series Modelling and Simulation in Science, Engineering and Technology (MSSET), Birkhäuser, 2004, submitted for publication. Zbl1105.82027MR2068589
- [37] Leyvraz F., Existence and properties of post-gel solutions for the kinetic equations of coagulation, J. Phys. A16 (1983) 2861-2873. MR715741
- [38] Leyvraz F., Scaling theory and exactly solved models in the kinetics of irreversible aggregation, Phys. Reports383 (2–3) (2003) 95-212.
- [39] G. Menon, R.L. Pego, Approach to self-similarity in Smoluchowski's coagulation equation, preprint, 2003. Zbl1049.35048
- [40] G. Menon, R.L. Pego, Dynamical scaling in Smoluchowski's coagulation equation: uniform convergence, preprint, 2003. Zbl1130.35128
- [41] S. Mischler, C. Mouhot, M. Rodriguez Ricard, Cooling process for inelastic Boltzmann equations, in preparation. Zbl1135.82325
- [42] Mischler S., Rodriguez Ricard M., Existence globale pour l'équation de Smoluchowski continue non homogène et comportement asymptotique des solutions, C. R. Acad. Sci. Paris Sér. I Math.336 (2003) 407-412. Zbl1036.35072MR1979355
- [43] Mischler S., Wennberg B., On the spatially homogeneous Boltzmann equation, Ann. Inst. H. Poincaré Anal. Non Linéaire16 (4) (1999) 467-501. Zbl0946.35075MR1697562
- [44] Tanaka H., Inaba S., Nakaza K., Steady-state size distribution for self-similar collision cascade, Icarus123 (1996) 450-455.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.