On self-similarity and stationary problem for fragmentation and coagulation models

M. Escobedo; S. Mischler; M. Rodriguez Ricard

Annales de l'I.H.P. Analyse non linéaire (2005)

  • Volume: 22, Issue: 1, page 99-125
  • ISSN: 0294-1449

How to cite

top

Escobedo, M., Mischler, S., and Rodriguez Ricard, M.. "On self-similarity and stationary problem for fragmentation and coagulation models." Annales de l'I.H.P. Analyse non linéaire 22.1 (2005): 99-125. <http://eudml.org/doc/78649>.

@article{Escobedo2005,
author = {Escobedo, M., Mischler, S., Rodriguez Ricard, M.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {equilibrium; no detailed balance condition; Poincaré-Bendixson’s Theory; Tikhonov fixed point theorem; self-similar solutions; uniqueness; existence; convergence to self-similarity},
language = {eng},
number = {1},
pages = {99-125},
publisher = {Elsevier},
title = {On self-similarity and stationary problem for fragmentation and coagulation models},
url = {http://eudml.org/doc/78649},
volume = {22},
year = {2005},
}

TY - JOUR
AU - Escobedo, M.
AU - Mischler, S.
AU - Rodriguez Ricard, M.
TI - On self-similarity and stationary problem for fragmentation and coagulation models
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 1
SP - 99
EP - 125
LA - eng
KW - equilibrium; no detailed balance condition; Poincaré-Bendixson’s Theory; Tikhonov fixed point theorem; self-similar solutions; uniqueness; existence; convergence to self-similarity
UR - http://eudml.org/doc/78649
ER -

References

top
  1. [1] Aldous D.J., Deterministic and stochastic models for coalescence (aggregation, coagulation): a review of the mean-field theory for probabilists, Bernoulli5 (1999) 3-48. Zbl0930.60096MR1673235
  2. [2] Amann H., Ordinary Differential Equations. An Introduction to Nonlinear Analysis, Translated from the German by Gerhard Metzen, de Gruyter Studies in Mathematics, vol. 13, Walter de Gruyter, Berlin, 1990. Zbl0708.34002MR1071170
  3. [3] Arlotti L., Banasiak J., Strictly substochastic semigroups with application to conservative and shattering solutions to fragmentation equations with mass loss, J. Math. Anal. Appl.293 (2) (2004) 693-720. Zbl1075.47023MR2053907
  4. [4] Balabane M., Systèmes différentiels, cours de l'Ecole Nationale des Ponts et Chaussées, 1982. Zbl0481.58005
  5. [5] N. Ben Abdallah, M. Escobedo, S. Mischler, Convergence to the equilibrium for the Pauli equation without detailed balance condition, in preparation. Zbl1072.35587MR2153383
  6. [6] Bertoin J., On small masses in self-similar fragmentations, Stochastic Process. Appl.109 (1) (2004) 13-22. Zbl1075.60092MR2024841
  7. [7] Bertoin J., The asymptotic behavior of fragmentation processes, J. Eur. Math. Soc. (JEMS)5 (4) (2003) 395-416. Zbl1042.60042MR2017852
  8. [8] Bertoin J., Eternal solutions to Smoluchowski's coagulation equation with additive kernel and their probabilistic interpretations, Ann. Appl. Probab.12 (2) (2002) 547-564. Zbl1030.60036MR1910639
  9. [9] Bertoin J., Self-similar fragmentations, Ann. Inst. H. Poincaré Probab. Statist.38 (3) (2002) 319-340. Zbl1002.60072MR1899456
  10. [10] Bertoin J., Homogeneous fragmentation processes, Probab. Theory Related Fields121 (3) (2001) 301-318. Zbl0992.60076MR1867425
  11. [11] Cazenave T., Haraux A., An Introduction to Semilinear Evolution Equations, Oxford Lecture Series in Mathematics and its Applications, vol. 13, The Clarendon Press, Oxford University Press, New York, 1998. Zbl0926.35049MR1691574
  12. [12] da Costa F.P., On the dynamic scaling behavior of solutions to the discrete Smoluchowski equations, Proc. Edinburgh Math. Soc.39 (2) (1996) 547-559. Zbl0858.34041MR1417696
  13. [13] Deaconu M., Tanré E., Smoluchowski's coagulation equation: probabilistic interpretation of solutions for constant, additive and multiplicative kernels, Ann. Scuola Norm. Sup. Pisa Cl. Sci.29 (4) (2000) 549-579. Zbl1072.60071MR1817709
  14. [14] Derrida B., Godréche C., Yekuitieli I., Scale-invariant regimes in one-dimensional models of growing and coalescing droplets, Phys. Rev. A44 (1991) 6241-6251. 
  15. [15] DiPerna R.J., Lions P.-L., Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math.98 (1989) 707-741. Zbl0696.34049MR1022305
  16. [16] van Dongen P.G.J., Ernst M.H., Cluster size distribution in irreversible aggregation at large times, J. Phys. A18 (1985) 2779-2793. MR811992
  17. [17] van Dongen P.G.J., Ernst M.H., Scaling solutions of Smoluchowski's coagulation equation, J. Statist. Phys.50 (1988) 295-329. Zbl0998.65139MR939490
  18. [18] Drake R.L., A general mathematical survey of the coagulation equation, in: Topics in Current Aerosol Research (part 2), International Reviews in Aerosol Physics and Chemistry, Pergamon Press, Oxford, 1972, pp. 203-376. 
  19. [19] Dubovskiĭ P.B., Stewart I.W., Trend to equilibrium for the coagulation–fragmentation equation, Math. Methods Appl. Sci.19 (1996) 761-772. Zbl0863.45007MR1396951
  20. [20] Edwards R.E., Functional Analysis, Theory and Applications, Holt, Rinehart and Winston, 1965. Zbl0182.16101MR221256
  21. [21] Eibeck A., Wagner W., Stochastic particle approximations for Smoluchowski's coagulation equation, Ann. Appl. Probab.11 (2001) 1137-1165. Zbl1021.60086MR1878293
  22. [22] Escobedo M., Laurençot Ph., Mischler S., Perthame B., Gelation and mass conservation in coagulation–fragmentation models, J. Differential Equations195 (1) (2003) 143-174. Zbl1133.82316MR2019246
  23. [23] Escobedo M., Mischler S., Perthame B., Gelation in coagulation and fragmentation models, Comm. Math. Phys.231 (2002) 157-188. Zbl1016.82027MR1947695
  24. [24] Escobedo M., Zuazua E., Large time behavior of the solutions of a convection diffusion equation, J. Funct. Anal.100 (1991) 119-161. Zbl0762.35011MR1124296
  25. [25] Fournier N., Giet J.-S., On small particles in coagulation–fragmentation equations, J. Statist. Phys.111 (5–6) (2003) 1299-1329. Zbl1018.60061MR1975930
  26. [26] N. Fournier, S. Mischler, Trend to the equilibrium for the coagulation equation with strong fragmentation but with balance condition, in: Proceedings: Mathematical, Physical and Engineering Sciences, in press. Zbl1170.82349
  27. [27] N. Fournier, S. Mischler, On a Boltzmann equation for elastic, inelastic and coalescing collisions, preprint, 2003, submitted for publication. Zbl1088.82021
  28. [28] Gamba I.M., Panferov V., Villani C., On the Boltzmann equation for diffusively excited granular media, Comm. Math. Phys.246 (3) (2004) 503-541. Zbl1106.82031MR2053942
  29. [29] Haas B., Loss of mass in deterministic and random fragmentations, Stochastic Process. Appl.106 (2) (2003) 245-277. Zbl1075.60553MR1989629
  30. [30] Kreer M., Penrose O., Proof of dynamical scaling in Smoluchowski's coagulation equation with constant kernel, J. Statist. Phys.75 (1994) 389-407. Zbl0828.60093MR1279758
  31. [31] Krivitsky D.S., Numerical solution of the Smoluchowski kinetic equation and asymptotics of the distribution function, J. Phys. A28 (1995) 2025-2039. Zbl0830.65143MR1336510
  32. [32] Ph. Laurençot, Convergence to self-similar solutions for coagulation equation, preprint, 2003. 
  33. [33] Laurençot Ph., Mischler S., From the discrete to the continuous coagulation–fragmentation equations, Proc. Roy. Soc. Edinburgh Sect. A132 (5) (2002) 1219-1248. Zbl1034.35011MR1938720
  34. [34] Laurençot Ph., Mischler S., The continuous coagulation–fragmentation equations with diffusion, Arch. Rational Mech. Anal.162 (2002) 45-99. Zbl0997.45005MR1892231
  35. [35] Laurençot Ph., Mischler S., Convergence to equilibrium for the continuous coagulation–fragmentation equation, Bull. Sci. Math.127 (2003) 179-190. Zbl1027.82030MR1988654
  36. [36] Laurençot P., Mischler S., On coalescence equations and related models, in: Degond P., Pareschi L., Russo G. (Eds.), Modelling and Computational Methods for Kinetic Equations, Series Modelling and Simulation in Science, Engineering and Technology (MSSET), Birkhäuser, 2004, submitted for publication. Zbl1105.82027MR2068589
  37. [37] Leyvraz F., Existence and properties of post-gel solutions for the kinetic equations of coagulation, J. Phys. A16 (1983) 2861-2873. MR715741
  38. [38] Leyvraz F., Scaling theory and exactly solved models in the kinetics of irreversible aggregation, Phys. Reports383 (2–3) (2003) 95-212. 
  39. [39] G. Menon, R.L. Pego, Approach to self-similarity in Smoluchowski's coagulation equation, preprint, 2003. Zbl1049.35048
  40. [40] G. Menon, R.L. Pego, Dynamical scaling in Smoluchowski's coagulation equation: uniform convergence, preprint, 2003. Zbl1130.35128
  41. [41] S. Mischler, C. Mouhot, M. Rodriguez Ricard, Cooling process for inelastic Boltzmann equations, in preparation. Zbl1135.82325
  42. [42] Mischler S., Rodriguez Ricard M., Existence globale pour l'équation de Smoluchowski continue non homogène et comportement asymptotique des solutions, C. R. Acad. Sci. Paris Sér. I Math.336 (2003) 407-412. Zbl1036.35072MR1979355
  43. [43] Mischler S., Wennberg B., On the spatially homogeneous Boltzmann equation, Ann. Inst. H. Poincaré Anal. Non Linéaire16 (4) (1999) 467-501. Zbl0946.35075MR1697562
  44. [44] Tanaka H., Inaba S., Nakaza K., Steady-state size distribution for self-similar collision cascade, Icarus123 (1996) 450-455. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.