Remarks on global controllability for the Burgers equation with two control forces

S. Guerrero; O. Yu. Imanuvilov

Annales de l'I.H.P. Analyse non linéaire (2007)

  • Volume: 24, Issue: 6, page 897-906
  • ISSN: 0294-1449

How to cite

top

Guerrero, S., and Imanuvilov, O. Yu.. "Remarks on global controllability for the Burgers equation with two control forces." Annales de l'I.H.P. Analyse non linéaire 24.6 (2007): 897-906. <http://eudml.org/doc/78768>.

@article{Guerrero2007,
author = {Guerrero, S., Imanuvilov, O. Yu.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {controllability; Burgers equation},
language = {eng},
number = {6},
pages = {897-906},
publisher = {Elsevier},
title = {Remarks on global controllability for the Burgers equation with two control forces},
url = {http://eudml.org/doc/78768},
volume = {24},
year = {2007},
}

TY - JOUR
AU - Guerrero, S.
AU - Imanuvilov, O. Yu.
TI - Remarks on global controllability for the Burgers equation with two control forces
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 6
SP - 897
EP - 906
LA - eng
KW - controllability; Burgers equation
UR - http://eudml.org/doc/78768
ER -

References

top
  1. [1] Ancona F., Marson A., On the attainable set for scalar nonlinear conservation laws with boundary control, SIAM J. Control Optim.36 (1) (1998) 290-312. Zbl0919.35082MR1616586
  2. [2] Belishev M.I., On approximating properties of solutions of the heat equation, in: Control Theory of Partial Differential Equations, Lecture Notes in Pure and Appl. Math., vol. 242, Chapman and Hall/CRC, Boca Raton, FL, 2005, pp. 43-50. Zbl1089.35012MR2149155
  3. [3] Coron J.-M., On the controllability of the 2-D incompressible Navier–Stokes equations with the Navier slip boundary conditions, ESAIM Control Optim. Calc. Var.1 (1995/96) 35-75. Zbl0872.93040
  4. [4] J.-M. Coron, Some open problems on the control of nonlinear partial differential equations, in: H. Berestycki, M. Bertsch, B. Peletier, L. Véron (Eds.), Perspectives in Nonlinear Partial Differential Equations: In Honor of Haïm Brezis, in: Contemporary Mathematics, American Mathematical Society, Providence, RI, in press. MR2376661
  5. [5] Coron J.-M., Global asymptotic stabilization for controllable systems without drift, Math. Control Signals Systems5 (3) (1992) 285-312. Zbl0760.93067MR1164379
  6. [6] Díaz J.I., Obstruction and some approximate controllability results for the Burgers equation and related problems, in: Control of Partial Differential Equations and Applications, Lecture Notes in Pure and Appl. Math., vol. 174, Dekker, New York, 1995, pp. 63-76. Zbl0853.93014MR1364638
  7. [7] Fernández-Cara E., Guerrero S., On the controllability of Burgers system, C. R. Acad. Sci. Paris, Ser. I341 (2005) 229-232. Zbl1073.35033MR2164677
  8. [8] Fursikov A., Imanuvilov O.Yu., On controllability of certain systems simulating a fluid flow, in: Flow Control, Minneapolis, MN, 1992, IMA Vol. Math. Appl., vol. 68, Springer, New York, 1995, pp. 149-184. Zbl0922.93006MR1348646
  9. [9] Glass O., Exact boundary controllability of 3-D Euler equation, ESAIM Control Optim. Calc. Var.5 (2000) 1-44. Zbl0940.93012MR1745685
  10. [10] Horsin T., On the controllability of the Burgers equation, ESAIM Control Optim. Calc. Var.3 (1998) 83-95. Zbl0897.93034MR1612027
  11. [11] Lions J.-L., Magenes E., Non-Homogeneous Boundary Value Problems and Applications, vol. I, Translated from the French by P. Kenneth, Die Grundlehren der Mathematischen Wissenschaften, Band 181, Springer-Verlag, New York–Heidelberg, 1972. Zbl0223.35039

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.