Linking over cones and nontrivial solutions for p-Laplace equations with p-superlinear nonlinearity

Marco Degiovanni; Sergio Lancelotti

Annales de l'I.H.P. Analyse non linéaire (2007)

  • Volume: 24, Issue: 6, page 907-919
  • ISSN: 0294-1449

How to cite

top

Degiovanni, Marco, and Lancelotti, Sergio. "Linking over cones and nontrivial solutions for p-Laplace equations with p-superlinear nonlinearity." Annales de l'I.H.P. Analyse non linéaire 24.6 (2007): 907-919. <http://eudml.org/doc/78769>.

@article{Degiovanni2007,
author = {Degiovanni, Marco, Lancelotti, Sergio},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {linking theorem; cohomological index; -Laplace equations; nontrivial solutions},
language = {eng},
number = {6},
pages = {907-919},
publisher = {Elsevier},
title = {Linking over cones and nontrivial solutions for p-Laplace equations with p-superlinear nonlinearity},
url = {http://eudml.org/doc/78769},
volume = {24},
year = {2007},
}

TY - JOUR
AU - Degiovanni, Marco
AU - Lancelotti, Sergio
TI - Linking over cones and nontrivial solutions for p-Laplace equations with p-superlinear nonlinearity
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 6
SP - 907
EP - 919
LA - eng
KW - linking theorem; cohomological index; -Laplace equations; nontrivial solutions
UR - http://eudml.org/doc/78769
ER -

References

top
  1. [1] Ambrosetti A., Rabinowitz P.H., Dual variational methods in critical point theory and applications, J. Funct. Anal.14 (1973) 349-381. Zbl0273.49063MR370183
  2. [2] Anane A., Simplicité et isolation de la première valeur propre du p-laplacien avec poids, C. R. Acad. Sci. Paris Sér. I Math.305 (16) (1987) 725-728. Zbl0633.35061MR920052
  3. [3] Anane A., Tsouli N., On the second eigenvalue of the p-Laplacian, in: Nonlinear Partial Differential Equations, Fès, 1994, Pitman Res. Notes Math. Ser., vol. 343, Longman, Harlow, 1996, pp. 1-9. Zbl0854.35081MR1417265
  4. [4] Bonnet A., A deformation lemma on a C 1 manifold, Manuscripta Math.81 (3–4) (1993) 339-359. Zbl0801.57023
  5. [5] Canino A., Degiovanni M., Nonsmooth critical point theory and quasilinear elliptic equations, in: Topological Methods in Differential Equations and Inclusions, Montreal, PQ, 1994, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 472, Kluwer Acad. Publ., Dordrecht, 1995, pp. 1-50. Zbl0851.35038MR1368669
  6. [6] Chang K.-C., Infinite-Dimensional Morse Theory and Multiple Solution Problems, Progress in Nonlinear Differential Equations and their Applications, vol. 6, Birkhäuser Boston Inc., Boston, MA, 1993. Zbl0779.58005MR1196690
  7. [7] Cingolani S., Degiovanni M., Nontrivial solutions for p-Laplace equations with right-hand side having p-linear growth at infinity, Comm. Partial Differential Equations30 (8) (2005) 1191-1203. Zbl1162.35367MR2180299
  8. [8] Corvellec J.-N., Degiovanni M., Marzocchi M., Deformation properties for continuous functionals and critical point theory, Topol. Methods Nonlinear Anal.1 (1) (1993) 151-171. Zbl0789.58021MR1215263
  9. [9] Cuesta M., Eigenvalue problems for the p-Laplacian with indefinite weights, Electron. J. Differential Equations33 (2001), 9 p. (electronic). Zbl0964.35110MR1836801
  10. [10] Degiovanni M., On Morse theory for continuous functionals, Conf. Semin. Mat. Univ. Bari (290) (2003) 1-22. MR1998472
  11. [11] del Pino M., Elgueta M., Manásevich R., A homotopic deformation along pof a Leray–Schauder degree result and existence for u ' p - 2 u ' ' + f ( t , u ) = 0 , u 0 = u T = 0 , p g t ; 1 , J. Differential Equations80 (1) (1989) 1-13. Zbl0708.34019
  12. [12] Dinca G., Jebelean P., Mawhin J., Variational and topological methods for Dirichlet problems with p-Laplacian, Port. Math. (N.S.)58 (3) (2001) 339-378. Zbl0991.35023MR1856715
  13. [13] Drábek P., Robinson S.B., Resonance problems for the p-Laplacian, J. Funct. Anal.169 (1) (1999) 189-200. Zbl0940.35087MR1726752
  14. [14] Fadell E.R., Rabinowitz P.H., Bifurcation for odd potential operators and an alternative topological index, J. Funct. Anal.26 (1) (1977) 48-67. Zbl0363.47029MR448409
  15. [15] Fadell E.R., Rabinowitz P.H., Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math.45 (2) (1978) 139-174. Zbl0403.57001MR478189
  16. [16] Fan X., Li Z., Linking and existence results for perturbations of the p-Laplacian, Nonlinear Anal.42 (8) (2000) 1413-1420. Zbl0957.35047MR1784084
  17. [17] Frigon M., On a new notion of linking and application to elliptic problems at resonance, J. Differential Equations153 (1) (1999) 96-120. Zbl0922.35044MR1682279
  18. [18] García Azorero J., Peral Alonso I., Comportement asymptotique des valeurs propres du p-laplacien, C. R. Acad. Sci. Paris Sér. I Math.307 (2) (1988) 75-78. Zbl0683.35067MR954263
  19. [19] Ioffe A., Schwartzman E., Metric critical point theory. I. Morse regularity and homotopic stability of a minimum, J. Math. Pures Appl. (9)75 (2) (1996) 125-153. Zbl0852.58018MR1380672
  20. [20] Lindqvist P., On the equation div u p - 2 u + λ u p - 2 u = 0 , Proc. Amer. Math. Soc.109 (1) (1990) 157-164. Zbl0714.35029MR1007505
  21. [21] Lindqvist P., Addendum: “On the equation div u p - 2 u + λ u p - 2 u = 0 ”, Proc. Amer. Math. Soc.116 (2) (1992) 583-584. Zbl0787.35027
  22. [22] Liu S., Existence of solutions to a superlinear p-Laplacian equation, Electron. J. Differential Equations66 (2001), 6 p. (electronic). Zbl1011.35062MR1863785
  23. [23] Marino A., Micheletti A.M., Pistoia A., Some variational results on semilinear problems with asymptotically nonsymmetric behaviour, in: Nonlinear Analysis, Sc. Norm. Super. di Pisa Quaderni, Scuola Norm. Sup., Pisa, 1991, pp. 243-256. Zbl0849.35035MR1205387
  24. [24] Marino A., Micheletti A.M., Pistoia A., A nonsymmetric asymptotically linear elliptic problem, Topol. Methods Nonlinear Anal.4 (2) (1994) 289-339. Zbl0844.35035MR1350975
  25. [25] Perera K., Nontrivial solutions of p-superlinear p-Laplacian problems, Appl. Anal.82 (9) (2003) 883-888. Zbl1039.35043MR2006534
  26. [26] Perera K., Nontrivial critical groups in p-Laplacian problems via the Yang index, Topol. Methods Nonlinear Anal.21 (2) (2003) 301-309. Zbl1039.47041MR1998432
  27. [27] Perera K., Szulkin A., p-Laplacian problems where the nonlinearity crosses an eigenvalue, Discrete Contin. Dyn. Syst.13 (3) (2005) 743-753. Zbl1094.35052MR2153141
  28. [28] Rabinowitz P.H., Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, vol. 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1986. Zbl0609.58002MR845785
  29. [29] Ribarska N.K., Tsachev T.Y., Krastanov M.I., Deformation lemma, Ljusternik–Schnirellmann theory and mountain pass theorem on C 1 -Finsler manifolds, Serdica Math. J.21 (3) (1995) 239-266. Zbl0837.58009
  30. [30] Spanier E.H., Algebraic Topology, McGraw-Hill Book Co., New York, 1966. Zbl0145.43303MR210112
  31. [31] Szulkin A., Ljusternik–Schnirelmann theory on C 1 -manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire5 (2) (1988) 119-139. Zbl0661.58009
  32. [32] Szulkin A., Willem M., Eigenvalue problems with indefinite weight, Studia Math.135 (2) (1999) 191-201. Zbl0931.35121MR1690753

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.