Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain
Eduardo Cerpa; Emmanuelle Crépeau
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 2, page 457-475
- ISSN: 0294-1449
Access Full Article
topHow to cite
topCerpa, Eduardo, and Crépeau, Emmanuelle. "Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain." Annales de l'I.H.P. Analyse non linéaire 26.2 (2009): 457-475. <http://eudml.org/doc/78851>.
@article{Cerpa2009,
author = {Cerpa, Eduardo, Crépeau, Emmanuelle},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {controllability; Korteweg-de Vries equation; critical domains; power series expansion},
language = {eng},
number = {2},
pages = {457-475},
publisher = {Elsevier},
title = {Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain},
url = {http://eudml.org/doc/78851},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Cerpa, Eduardo
AU - Crépeau, Emmanuelle
TI - Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 2
SP - 457
EP - 475
LA - eng
KW - controllability; Korteweg-de Vries equation; critical domains; power series expansion
UR - http://eudml.org/doc/78851
ER -
References
top- [1] Beauchard K., Local controllability of a 1-D Schrödinger equation, J. Math. Pures Appl. (9)84 (7) (2005) 851-956, MR MR2144647. Zbl1124.93009MR2144647
- [2] Beauchard K., Coron J.-M., Controllability of a quantum particle in a moving potential well, J. Funct. Anal.232 (2) (2006) 328-389, MR MR2200740. Zbl1188.93017MR2200740
- [3] Bona J.L., Sun S.M., Zhang B.-Y., A nonhomogeneous boundary-value problem for the Korteweg–de Vries equation posed on a finite domain, Comm. Partial Differential Equations28 (7–8) (2003) 1391-1436, MR MR1998942 (2004h:35195). Zbl1057.35049MR1998942
- [4] Cerpa E., Exact controllability of a nonlinear Korteweg–de Vries equation on a critical spatial domain, SIAM J. Control Optim.46 (3) (2007) 877-899. Zbl1147.93005MR2338431
- [5] M. Chapouly, Global controllability of a nonlinear Korteweg–de Vries equation, Preprint, 2007. Zbl1170.93006MR2538210
- [6] Coron J.-M., Global asymptotic stabilization for controllable systems without drift, Math. Control Signals Systems5 (3) (1992) 295-312, MR MR1164379 (93m:93084). Zbl0760.93067MR1164379
- [7] Coron J.-M., On the controllability of 2-D incompressible perfect fluids, J. Math. Pures Appl. (9)75 (2) (2007) 155-188, MR MR1380673 (97b:93010). Zbl0848.76013MR1380673
- [8] Coron J.-M., Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations, ESAIM Control Optim. Calc. Var.8 (2002) 513-554, (electronic). A tribute to J.L. Lions, MR MR1932962 (2004a:93009). Zbl1071.76012MR1932962
- [9] Coron J.-M., On the small-time local controllability of a quantum particle in a moving one-dimensional infinite square potential well, C. R. Math. Acad. Sci. Paris342 (2) (2006) 103-108, MR MR2193655. Zbl1082.93002MR2193655
- [10] Coron J.-M., Control and Nonlinearity, Mathematical Surveys and Monographs, vol. 136, American Mathematical Society, Providence, RI, 2007, MR MR2302744. Zbl1140.93002MR2302744
- [11] Coron J.-M., Crépeau E., Exact boundary controllability of a nonlinear KdV equation with critical lengths, J. Eur. Math. Soc. (JEMS)6 (3) (2004) 367-398, MR MR2060480 (2005b:93016). Zbl1061.93054MR2060480
- [12] Coron J.-M., Trélat E., Global steady-state controllability of one-dimensional semilinear heat equations, SIAM J. Control Optim.43 (2) (2004) 549-569, (electronic), MR MR2086173 (2005f:93009). Zbl1101.93011MR2086173
- [13] Coron J.-M., Trélat E., Global steady-state stabilization and controllability of 1D semilinear wave equations, Commun. Contemp. Math.8 (4) (2006) 535-567, MR MR2258876. Zbl1101.93039MR2258876
- [14] O. Glass, S. Guerrero, Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit, Preprint, Université de Paris 6, 2007. Zbl1160.35063MR2463799
- [15] Holmer J., The initial-boundary value problem for the Korteweg–de Vries equation, Comm. Partial Differential Equations31 (7–9) (2006) 1151-1190, MR MR2254610. Zbl1111.35062MR2254610
- [16] Korteweg D.J., de Vries G., On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag.39 (1895) 422-443. Zbl26.0881.02JFM26.0881.02
- [17] Lions J.-L., Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1, Recherches en Mathématiques Appliquées, vol. 8, Masson, Paris, 1988, MR MR953547 (90a:49040). Zbl0653.93002MR953547
- [18] Rosier L., Exact boundary controllability for the Korteweg–de Vries equation on a bounded domain, ESAIM Control Optim. Calc. Var.2 (1997) 33-55, (electronic), MR MR1440078 (98d:93016). Zbl0873.93008MR1440078
- [19] Rosier L., Exact boundary controllability for the linear Korteweg–de Vries equation on the half-line, SIAM J. Control Optim.39 (2) (2000) 331-351, (electronic), MR MR1788062 (2001j:93012). Zbl0966.93055MR1788062
- [20] Rosier L., Control of the surface of a fluid by a wavemaker, ESAIM Control Optim. Calc. Var.10 (3) (1988) 346-380, (electronic), MR MR2084328 (2005h:93091). Zbl1094.93014MR2084328
- [21] Russell D.L., Zhang B.Y., Exact controllability and stabilizability of the Korteweg–de Vries equation, Trans. Amer. Math. Soc.348 (9) (1996) 3643-3672, MR MR1360229 (96m:93025). Zbl0862.93035MR1360229
- [22] Zhang B.Y., Exact boundary controllability of the Korteweg–de Vries equation, SIAM J. Control Optim.37 (2) (1999) 543-565, (electronic), MR MR1670653 (2000b:93010). Zbl0930.35160MR1670653
Citations in EuDML Documents
top- O. Glass, S. Guerrero, On the controllability of the fifth-order Korteweg-de Vries equation
- Eugene Kramer, Ivonne Rivas, Bing-Yu Zhang, Well-posedness of a class of non-homogeneous boundary value problems of the Korteweg-de Vries equation on a finite domain
- Olivier Glass, Problèmes de contrôle pour des équations dispersives unidimensionnelles
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.