Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain

Eduardo Cerpa; Emmanuelle Crépeau

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 2, page 457-475
  • ISSN: 0294-1449

How to cite

top

Cerpa, Eduardo, and Crépeau, Emmanuelle. "Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain." Annales de l'I.H.P. Analyse non linéaire 26.2 (2009): 457-475. <http://eudml.org/doc/78851>.

@article{Cerpa2009,
author = {Cerpa, Eduardo, Crépeau, Emmanuelle},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {controllability; Korteweg-de Vries equation; critical domains; power series expansion},
language = {eng},
number = {2},
pages = {457-475},
publisher = {Elsevier},
title = {Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain},
url = {http://eudml.org/doc/78851},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Cerpa, Eduardo
AU - Crépeau, Emmanuelle
TI - Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 2
SP - 457
EP - 475
LA - eng
KW - controllability; Korteweg-de Vries equation; critical domains; power series expansion
UR - http://eudml.org/doc/78851
ER -

References

top
  1. [1] Beauchard K., Local controllability of a 1-D Schrödinger equation, J. Math. Pures Appl. (9)84 (7) (2005) 851-956, MR MR2144647. Zbl1124.93009MR2144647
  2. [2] Beauchard K., Coron J.-M., Controllability of a quantum particle in a moving potential well, J. Funct. Anal.232 (2) (2006) 328-389, MR MR2200740. Zbl1188.93017MR2200740
  3. [3] Bona J.L., Sun S.M., Zhang B.-Y., A nonhomogeneous boundary-value problem for the Korteweg–de Vries equation posed on a finite domain, Comm. Partial Differential Equations28 (7–8) (2003) 1391-1436, MR MR1998942 (2004h:35195). Zbl1057.35049MR1998942
  4. [4] Cerpa E., Exact controllability of a nonlinear Korteweg–de Vries equation on a critical spatial domain, SIAM J. Control Optim.46 (3) (2007) 877-899. Zbl1147.93005MR2338431
  5. [5] M. Chapouly, Global controllability of a nonlinear Korteweg–de Vries equation, Preprint, 2007. Zbl1170.93006MR2538210
  6. [6] Coron J.-M., Global asymptotic stabilization for controllable systems without drift, Math. Control Signals Systems5 (3) (1992) 295-312, MR MR1164379 (93m:93084). Zbl0760.93067MR1164379
  7. [7] Coron J.-M., On the controllability of 2-D incompressible perfect fluids, J. Math. Pures Appl. (9)75 (2) (2007) 155-188, MR MR1380673 (97b:93010). Zbl0848.76013MR1380673
  8. [8] Coron J.-M., Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations, ESAIM Control Optim. Calc. Var.8 (2002) 513-554, (electronic). A tribute to J.L. Lions, MR MR1932962 (2004a:93009). Zbl1071.76012MR1932962
  9. [9] Coron J.-M., On the small-time local controllability of a quantum particle in a moving one-dimensional infinite square potential well, C. R. Math. Acad. Sci. Paris342 (2) (2006) 103-108, MR MR2193655. Zbl1082.93002MR2193655
  10. [10] Coron J.-M., Control and Nonlinearity, Mathematical Surveys and Monographs, vol. 136, American Mathematical Society, Providence, RI, 2007, MR MR2302744. Zbl1140.93002MR2302744
  11. [11] Coron J.-M., Crépeau E., Exact boundary controllability of a nonlinear KdV equation with critical lengths, J. Eur. Math. Soc. (JEMS)6 (3) (2004) 367-398, MR MR2060480 (2005b:93016). Zbl1061.93054MR2060480
  12. [12] Coron J.-M., Trélat E., Global steady-state controllability of one-dimensional semilinear heat equations, SIAM J. Control Optim.43 (2) (2004) 549-569, (electronic), MR MR2086173 (2005f:93009). Zbl1101.93011MR2086173
  13. [13] Coron J.-M., Trélat E., Global steady-state stabilization and controllability of 1D semilinear wave equations, Commun. Contemp. Math.8 (4) (2006) 535-567, MR MR2258876. Zbl1101.93039MR2258876
  14. [14] O. Glass, S. Guerrero, Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit, Preprint, Université de Paris 6, 2007. Zbl1160.35063MR2463799
  15. [15] Holmer J., The initial-boundary value problem for the Korteweg–de Vries equation, Comm. Partial Differential Equations31 (7–9) (2006) 1151-1190, MR MR2254610. Zbl1111.35062MR2254610
  16. [16] Korteweg D.J., de Vries G., On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag.39 (1895) 422-443. Zbl26.0881.02JFM26.0881.02
  17. [17] Lions J.-L., Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1, Recherches en Mathématiques Appliquées, vol. 8, Masson, Paris, 1988, MR MR953547 (90a:49040). Zbl0653.93002MR953547
  18. [18] Rosier L., Exact boundary controllability for the Korteweg–de Vries equation on a bounded domain, ESAIM Control Optim. Calc. Var.2 (1997) 33-55, (electronic), MR MR1440078 (98d:93016). Zbl0873.93008MR1440078
  19. [19] Rosier L., Exact boundary controllability for the linear Korteweg–de Vries equation on the half-line, SIAM J. Control Optim.39 (2) (2000) 331-351, (electronic), MR MR1788062 (2001j:93012). Zbl0966.93055MR1788062
  20. [20] Rosier L., Control of the surface of a fluid by a wavemaker, ESAIM Control Optim. Calc. Var.10 (3) (1988) 346-380, (electronic), MR MR2084328 (2005h:93091). Zbl1094.93014MR2084328
  21. [21] Russell D.L., Zhang B.Y., Exact controllability and stabilizability of the Korteweg–de Vries equation, Trans. Amer. Math. Soc.348 (9) (1996) 3643-3672, MR MR1360229 (96m:93025). Zbl0862.93035MR1360229
  22. [22] Zhang B.Y., Exact boundary controllability of the Korteweg–de Vries equation, SIAM J. Control Optim.37 (2) (1999) 543-565, (electronic), MR MR1670653 (2000b:93010). Zbl0930.35160MR1670653

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.