The plancherel formula for group extensions

Adam Kleppner; Ronald Lipsman

Annales scientifiques de l'École Normale Supérieure (1972)

  • Volume: 5, Issue: 3, page 459-516
  • ISSN: 0012-9593

How to cite

top

Kleppner, Adam, and Lipsman, Ronald. "The plancherel formula for group extensions." Annales scientifiques de l'École Normale Supérieure 5.3 (1972): 459-516. <http://eudml.org/doc/81904>.

@article{Kleppner1972,
author = {Kleppner, Adam, Lipsman, Ronald},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {3},
pages = {459-516},
publisher = {Elsevier},
title = {The plancherel formula for group extensions},
url = {http://eudml.org/doc/81904},
volume = {5},
year = {1972},
}

TY - JOUR
AU - Kleppner, Adam
AU - Lipsman, Ronald
TI - The plancherel formula for group extensions
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1972
PB - Elsevier
VL - 5
IS - 3
SP - 459
EP - 516
LA - eng
UR - http://eudml.org/doc/81904
ER -

References

top
  1. [1] L. AUSLANDER and C. MOORE, Unitary representations of solvable Lie groups (Memoirs Amer. Math. Soc., No. 62, 1966). Zbl0204.14202MR34 #7723
  2. [2] L. BAGGETT, A weak containment theorem for groups with a quotient R-group (Trans. Amer. Math. Soc., vol. 128, 1967, p. 277-290). Zbl0158.14105MR36 #3921
  3. [3] N. BOURBAKI, Intégration, chap. V, Hermann, Paris, 1956. 
  4. [4] N. BOURBAKI, Intégration, chap. VI, Hermann, Paris, 1963. 
  5. [5] F. BRUHAT, Sur les représentations induites des groupes de Lie (Bull. Soc. Math. Fr., vol. 84, 1956, p. 97-205). Zbl0074.10303MR18,907i
  6. [6] E. DAVIES, On the Borel structure of C*-algebras (Comm. Math. Phys., vol. 8, 1968 p. 147-163). Zbl0153.44701MR37 #6764
  7. [7] J. DIXMIER, Algèbres quasi-unitaires (Comm. Math. Helv., vol. 26, 1952, p. 275-322). Zbl0047.35601MR14,660b
  8. [8] J. DIXMIER, Les algèbres d'opérateurs dans l'espace hilbertien, Gauthier-Villars, Paris, 1957. Zbl0088.32304
  9. [9] J. DIXMIER, Sur les représentations des groupes de Lie nilpotents, III (Can. J. Math., vol. 10, 1958, p. 321-348). Zbl0100.32401MR20 #1929
  10. [10] J. DIXMIER, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964. Zbl0152.32902MR30 #1404
  11. [11] J. DIXMIER, Sur la représentation régulière d'un groupe localement compact connexe (Ann. scient. Éc. Norm. Sup., vol. 2, 1969, p. 423-436). Zbl0186.46304MR41 #5553
  12. [12] E. EFFROS, The Borel space of von Neumann algebras on a separable Hilbert space (Pac. J. Math., vol. 15, 1965, p. 1153-1164). Zbl0135.36102MR32 #2923
  13. [13] E. EFFROS, The canonical measures for a separable C*-algebra (Amer. J. Math., vol. 92, 1970, p. 56-60). Zbl0203.44801MR41 #4259
  14. [14] J. FELL, Weak containment and induced representations of groups (Can. J. Math., vol. 14, 1962, p. 237-268). Zbl0138.07301MR27 #242
  15. [15] J. GLIMM, Locally compact transformation groups (Trans. Amer. Math. Soc., vol. 101, 1961, p. 124-138). Zbl0119.10802MR25 #146
  16. [16] S. GROSSER and M. MOSKOWITZ, Harmonic Analysis on central topological groups (Trans. Amer. Math. Soc., vol. 156, 1971, p. 419-454). Zbl0222.43010MR43 #2165
  17. [17] A. GUICHARDET, Caractères des algèbres de Banach involutives (Ann. Inst. Fourier, vol. 13, 1963, p. 1-81). Zbl0124.07003MR26 #5437
  18. [18] R. KALLMAN, Certain topological groups are type I (Bull. Amer. Math. Soc., vol. 76, 1970, p. 404-406). Zbl0192.48202MR41 #385
  19. [19] C. KURATOWSKI, Topologie, I, Warsaw, 1938. 
  20. [20] R. LIPSMAN, Uniformly bounded representations of the Lorentz groups (Amer. J. Math., vol. 91, 1969, p. 938-962). Zbl0189.14101MR42 #1946
  21. [21] R. LIPSMAN, Representation theory of almost connected groups (Pac. J. Math., vol. 42, 1972) (to appear). Zbl0242.22008MR48 #6317
  22. [22] G. MACKEY, Induced representations of locally compact groups, I (Ann. of Math., vol. 55, 1952, p. 101-139). Zbl0046.11601MR13,434a
  23. [23] G. MACKEY, Borel structures in groups and their duals (Trans. Amer. Math. Soc., vol. 85, 1957, p. 134-165). Zbl0082.11201MR19,752b
  24. [24] G. MACKEY, Unitary representations of group extensions, I (Acta Math., vol. 99, 1958, p. 265-311). Zbl0082.11301MR20 #4789
  25. [25] G. MACKEY, Group representations and non-commutative harmonic analysis, University of California, Berkeley, 1965. 
  26. [26] C. MOORE, Groups with finite-dimensional irreducible representations (Trans. Amer. Math. Soc., vol. 166, 1972, p. 401-410). Zbl0236.22010MR46 #1960
  27. [27] C. MOORE, A Plancherel formula for non-unimodular groups, Address presented to the International Conference on Harmonic Analysis, University of Maryland, November 1971. 
  28. [28] L. PUKANSZKY, On the theory of quasi-unitary algebras (Acta Sci. Math., vol. 16, 1955, p. 103-121). Zbl0064.36701MR17,515a
  29. [29] L. PUKANSZKY, Unitary representations of solvable Lie groups (Ann. scient. Éc. Norm. Sup., vol. 4, 1971, p. 457-608). Zbl0238.22010MR55 #12866
  30. [30] G. RIDEAU, On the reduction of the regular representation of the Poincaré group (Comm. Math. Phys., vol. 3, 1966, p. 218-227). Zbl0158.14203MR34 #7717
  31. [31] N. TATSUUMA, Plancherel formula for non-unimodular locally compact groups (J. of Math. of Kyoto Univ., vol. 12, 1972, p. 179-261). Zbl0241.22017MR45 #8777
  32. [32] V. VARADARAJAN, Groups of automorphism of Borel spaces (Trans. Amer. Math. Soc., vol. 109, 1963, p. 191-220). Zbl0192.14203MR28 #3139

Citations in EuDML Documents

top
  1. Paolo Baldi, Philippe Bougerol, Pierre Crepel, Théorème central limite local sur les extensions compactes de d
  2. Ronald L. Lipsman, Induced representations of completely solvable Lie groups
  3. Anthony H. Dooley, Garth I. Gaudry, An extension of deLeeuw’s theorem to the n -dimensional rotation group
  4. Adam Kleppner, Ronald Lipsman, The plancherel formula for group extensions II
  5. Ronald L. Lipsman, Type I criteria and the Plancherel formula for Lie groups with co-compact radical
  6. Gilbert Arsac, Sur l'espace de Banach engendré par les coefficients d'une représentation unitaire
  7. Michel Mizony, Contribution à l'analyse harmonique sphérique
  8. Niels Vigand Pedersen, Lie groups with smooth characters and with smooth semicharacters

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.