The plancherel formula for group extensions
Annales scientifiques de l'École Normale Supérieure (1972)
- Volume: 5, Issue: 3, page 459-516
- ISSN: 0012-9593
Access Full Article
topHow to cite
topKleppner, Adam, and Lipsman, Ronald. "The plancherel formula for group extensions." Annales scientifiques de l'École Normale Supérieure 5.3 (1972): 459-516. <http://eudml.org/doc/81904>.
@article{Kleppner1972,
author = {Kleppner, Adam, Lipsman, Ronald},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {3},
pages = {459-516},
publisher = {Elsevier},
title = {The plancherel formula for group extensions},
url = {http://eudml.org/doc/81904},
volume = {5},
year = {1972},
}
TY - JOUR
AU - Kleppner, Adam
AU - Lipsman, Ronald
TI - The plancherel formula for group extensions
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1972
PB - Elsevier
VL - 5
IS - 3
SP - 459
EP - 516
LA - eng
UR - http://eudml.org/doc/81904
ER -
References
top- [1] L. AUSLANDER and C. MOORE, Unitary representations of solvable Lie groups (Memoirs Amer. Math. Soc., No. 62, 1966). Zbl0204.14202MR34 #7723
- [2] L. BAGGETT, A weak containment theorem for groups with a quotient R-group (Trans. Amer. Math. Soc., vol. 128, 1967, p. 277-290). Zbl0158.14105MR36 #3921
- [3] N. BOURBAKI, Intégration, chap. V, Hermann, Paris, 1956.
- [4] N. BOURBAKI, Intégration, chap. VI, Hermann, Paris, 1963.
- [5] F. BRUHAT, Sur les représentations induites des groupes de Lie (Bull. Soc. Math. Fr., vol. 84, 1956, p. 97-205). Zbl0074.10303MR18,907i
- [6] E. DAVIES, On the Borel structure of C*-algebras (Comm. Math. Phys., vol. 8, 1968 p. 147-163). Zbl0153.44701MR37 #6764
- [7] J. DIXMIER, Algèbres quasi-unitaires (Comm. Math. Helv., vol. 26, 1952, p. 275-322). Zbl0047.35601MR14,660b
- [8] J. DIXMIER, Les algèbres d'opérateurs dans l'espace hilbertien, Gauthier-Villars, Paris, 1957. Zbl0088.32304
- [9] J. DIXMIER, Sur les représentations des groupes de Lie nilpotents, III (Can. J. Math., vol. 10, 1958, p. 321-348). Zbl0100.32401MR20 #1929
- [10] J. DIXMIER, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964. Zbl0152.32902MR30 #1404
- [11] J. DIXMIER, Sur la représentation régulière d'un groupe localement compact connexe (Ann. scient. Éc. Norm. Sup., vol. 2, 1969, p. 423-436). Zbl0186.46304MR41 #5553
- [12] E. EFFROS, The Borel space of von Neumann algebras on a separable Hilbert space (Pac. J. Math., vol. 15, 1965, p. 1153-1164). Zbl0135.36102MR32 #2923
- [13] E. EFFROS, The canonical measures for a separable C*-algebra (Amer. J. Math., vol. 92, 1970, p. 56-60). Zbl0203.44801MR41 #4259
- [14] J. FELL, Weak containment and induced representations of groups (Can. J. Math., vol. 14, 1962, p. 237-268). Zbl0138.07301MR27 #242
- [15] J. GLIMM, Locally compact transformation groups (Trans. Amer. Math. Soc., vol. 101, 1961, p. 124-138). Zbl0119.10802MR25 #146
- [16] S. GROSSER and M. MOSKOWITZ, Harmonic Analysis on central topological groups (Trans. Amer. Math. Soc., vol. 156, 1971, p. 419-454). Zbl0222.43010MR43 #2165
- [17] A. GUICHARDET, Caractères des algèbres de Banach involutives (Ann. Inst. Fourier, vol. 13, 1963, p. 1-81). Zbl0124.07003MR26 #5437
- [18] R. KALLMAN, Certain topological groups are type I (Bull. Amer. Math. Soc., vol. 76, 1970, p. 404-406). Zbl0192.48202MR41 #385
- [19] C. KURATOWSKI, Topologie, I, Warsaw, 1938.
- [20] R. LIPSMAN, Uniformly bounded representations of the Lorentz groups (Amer. J. Math., vol. 91, 1969, p. 938-962). Zbl0189.14101MR42 #1946
- [21] R. LIPSMAN, Representation theory of almost connected groups (Pac. J. Math., vol. 42, 1972) (to appear). Zbl0242.22008MR48 #6317
- [22] G. MACKEY, Induced representations of locally compact groups, I (Ann. of Math., vol. 55, 1952, p. 101-139). Zbl0046.11601MR13,434a
- [23] G. MACKEY, Borel structures in groups and their duals (Trans. Amer. Math. Soc., vol. 85, 1957, p. 134-165). Zbl0082.11201MR19,752b
- [24] G. MACKEY, Unitary representations of group extensions, I (Acta Math., vol. 99, 1958, p. 265-311). Zbl0082.11301MR20 #4789
- [25] G. MACKEY, Group representations and non-commutative harmonic analysis, University of California, Berkeley, 1965.
- [26] C. MOORE, Groups with finite-dimensional irreducible representations (Trans. Amer. Math. Soc., vol. 166, 1972, p. 401-410). Zbl0236.22010MR46 #1960
- [27] C. MOORE, A Plancherel formula for non-unimodular groups, Address presented to the International Conference on Harmonic Analysis, University of Maryland, November 1971.
- [28] L. PUKANSZKY, On the theory of quasi-unitary algebras (Acta Sci. Math., vol. 16, 1955, p. 103-121). Zbl0064.36701MR17,515a
- [29] L. PUKANSZKY, Unitary representations of solvable Lie groups (Ann. scient. Éc. Norm. Sup., vol. 4, 1971, p. 457-608). Zbl0238.22010MR55 #12866
- [30] G. RIDEAU, On the reduction of the regular representation of the Poincaré group (Comm. Math. Phys., vol. 3, 1966, p. 218-227). Zbl0158.14203MR34 #7717
- [31] N. TATSUUMA, Plancherel formula for non-unimodular locally compact groups (J. of Math. of Kyoto Univ., vol. 12, 1972, p. 179-261). Zbl0241.22017MR45 #8777
- [32] V. VARADARAJAN, Groups of automorphism of Borel spaces (Trans. Amer. Math. Soc., vol. 109, 1963, p. 191-220). Zbl0192.14203MR28 #3139
Citations in EuDML Documents
top- Paolo Baldi, Philippe Bougerol, Pierre Crepel, Théorème central limite local sur les extensions compactes de
- Ronald L. Lipsman, Induced representations of completely solvable Lie groups
- Anthony H. Dooley, Garth I. Gaudry, An extension of deLeeuw’s theorem to the -dimensional rotation group
- Adam Kleppner, Ronald Lipsman, The plancherel formula for group extensions II
- Ronald L. Lipsman, Type I criteria and the Plancherel formula for Lie groups with co-compact radical
- Gilbert Arsac, Sur l'espace de Banach engendré par les coefficients d'une représentation unitaire
- Michel Mizony, Contribution à l'analyse harmonique sphérique
- Niels Vigand Pedersen, Lie groups with smooth characters and with smooth semicharacters
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.