Étude des feuilletages transversalement complets et applications
Annales scientifiques de l'École Normale Supérieure (1977)
- Volume: 10, Issue: 3, page 289-307
- ISSN: 0012-9593
Access Full Article
topHow to cite
topMolino, Pierre. "Étude des feuilletages transversalement complets et applications." Annales scientifiques de l'École Normale Supérieure 10.3 (1977): 289-307. <http://eudml.org/doc/81997>.
@article{Molino1977,
author = {Molino, Pierre},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {fre},
number = {3},
pages = {289-307},
publisher = {Elsevier},
title = {Étude des feuilletages transversalement complets et applications},
url = {http://eudml.org/doc/81997},
volume = {10},
year = {1977},
}
TY - JOUR
AU - Molino, Pierre
TI - Étude des feuilletages transversalement complets et applications
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1977
PB - Elsevier
VL - 10
IS - 3
SP - 289
EP - 307
LA - fre
UR - http://eudml.org/doc/81997
ER -
References
top- [1] R. BARRE, De quelques aspects de la théorie des Q-variétés (Ann. Inst. Fourier, XXIII (3), 1973, p. 227-312). Zbl0258.57008MR50 #1275
- [2] L. CONLON, Transversally parallelisable foliations (Trans. Amer. Math. Society, 194, 1974, p. 79-102). Zbl0288.57011MR51 #6844
- [3] H. DRIESSEN, Cohomologie basique des feuilletages de Lie (Thèse 3e cycle, Montpellier, 1976).
- [4] CH. EHRESMANN, Structures feuilletées (Proc. 5e Can. Math., 1961, p. 109). Zbl0146.19501
- [5] E. FEDIDA, Feuilletage de Lie (Thèse, Strasbourg, 1972).
- [6] V. GUILLEMIN, A Jordan-Hölder decomposition for a certain class of infinite dimensional Lie algebras (J. Differential Geometry, 2, 1968, p. 313-345). Zbl0183.26102MR41 #8481
- [7] V. GUILLEMIN and S. STERNBERG, An algebraic model of transitive differential geometry (Bull. of Amer. Math. Soc., 70, 1964, p. 16-47). Zbl0121.38801MR30 #533
- [8] A. HAEFLIGER, Variétés feuilletées (Annali Sc. Norm. Sup., Pisa, 16, 1964, p. 367-397). Zbl0122.40702MR32 #6487
- [9] S. KOBAYASHI and K. NOMIZU, Fundations of differential geometry Interscience Publishers, 1963. Zbl0119.37502
- [9] bis J. LESLIE, A remark on the group of automorphisms of a foliatlon having a dense leaf, (J. Differentil Geometry, 7, 1972, pp. 597-601). Zbl0293.58007MR49 #11536
- [10] P. MOLINO, (a) Connexions et G-structures sur les variétés feuilletées (Bull. Sc. Math., Paris, 92, 1968, p. 59-63) ; (b) Propriétés cohomologiques et propriétés topologiques des feuilletages à C.T.P. (Topology, 12, 1973, p. 317-325) ; (c) Sur la géométrie transverse des feuilletages (Ann. Inst. Fourier, XXV, 1975, p. 279-284) ; (d) Feuilletages transversalement parallélisables et feuilletages de Lie (C.R. Acad. Sc., Paris, t. 282, série A, 1976, p. 99-101). Zbl0314.57015MR38 #2807
- [11] G. REEB, Sur certaines propriétés topologiques des variétés feuilletées, Hermann, Paris, 1952. Zbl0049.12602MR14,1113a
- [12] B. REINHART, Foliated manifolds with bundle-like metrics (Annals of Maths., 69, 1959, p. 119-132 Zbl0122.16604MR21 #6004
- [13] H. SUSSMANN, A generalization of the closed subgroup theorem to quotients of arbitrary manifolds (J. of Differential Geometry, 10, (1), 1975, p. 151-166). Zbl0342.58004MR54 #13964
Citations in EuDML Documents
top- Pierre Dazord, 4 Feuilletages et mécanique hamiltonienne
- Robert Wolak, Foliations admitting transverse systems of differential equations
- Vlad Sergiescu, Cohomologie basique et dualité des feuilletages riemanniens
- Jan Kubarski, The Chern-Weil Homomorphism of Regular Lie Algebroids
- Robert A. Blumenthal, James J. Hebda, De Rham decomposition theorems for foliated manifolds
- Jan Kubarski, The Characteristic Classes of Flat and of Partially Flat Regular Lie Algebroids over Foliated Manifolds
- Jan Kubarski, Characteristic Classes of Flat and of Partially Flat Regular Lie Algebroids over Foliated Manifolds
- Jan Kubarski, Algebroid nature of the characteristic classes of flat bundles
- Vincent Cavalier, Pseudogroupes complexes quasi parallélisés de dimension un
- Jan Kubarski, The Euler-Poincaré-Hopf theorem for flat connections in some transitive Lie algebroids
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.