Étude des feuilletages transversalement complets et applications

Pierre Molino

Annales scientifiques de l'École Normale Supérieure (1977)

  • Volume: 10, Issue: 3, page 289-307
  • ISSN: 0012-9593

How to cite

top

Molino, Pierre. "Étude des feuilletages transversalement complets et applications." Annales scientifiques de l'École Normale Supérieure 10.3 (1977): 289-307. <http://eudml.org/doc/81997>.

@article{Molino1977,
author = {Molino, Pierre},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {fre},
number = {3},
pages = {289-307},
publisher = {Elsevier},
title = {Étude des feuilletages transversalement complets et applications},
url = {http://eudml.org/doc/81997},
volume = {10},
year = {1977},
}

TY - JOUR
AU - Molino, Pierre
TI - Étude des feuilletages transversalement complets et applications
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1977
PB - Elsevier
VL - 10
IS - 3
SP - 289
EP - 307
LA - fre
UR - http://eudml.org/doc/81997
ER -

References

top
  1. [1] R. BARRE, De quelques aspects de la théorie des Q-variétés (Ann. Inst. Fourier, XXIII (3), 1973, p. 227-312). Zbl0258.57008MR50 #1275
  2. [2] L. CONLON, Transversally parallelisable foliations (Trans. Amer. Math. Society, 194, 1974, p. 79-102). Zbl0288.57011MR51 #6844
  3. [3] H. DRIESSEN, Cohomologie basique des feuilletages de Lie (Thèse 3e cycle, Montpellier, 1976). 
  4. [4] CH. EHRESMANN, Structures feuilletées (Proc. 5e Can. Math., 1961, p. 109). Zbl0146.19501
  5. [5] E. FEDIDA, Feuilletage de Lie (Thèse, Strasbourg, 1972). 
  6. [6] V. GUILLEMIN, A Jordan-Hölder decomposition for a certain class of infinite dimensional Lie algebras (J. Differential Geometry, 2, 1968, p. 313-345). Zbl0183.26102MR41 #8481
  7. [7] V. GUILLEMIN and S. STERNBERG, An algebraic model of transitive differential geometry (Bull. of Amer. Math. Soc., 70, 1964, p. 16-47). Zbl0121.38801MR30 #533
  8. [8] A. HAEFLIGER, Variétés feuilletées (Annali Sc. Norm. Sup., Pisa, 16, 1964, p. 367-397). Zbl0122.40702MR32 #6487
  9. [9] S. KOBAYASHI and K. NOMIZU, Fundations of differential geometry Interscience Publishers, 1963. Zbl0119.37502
  10. [9] bis J. LESLIE, A remark on the group of automorphisms of a foliatlon having a dense leaf, (J. Differentil Geometry, 7, 1972, pp. 597-601). Zbl0293.58007MR49 #11536
  11. [10] P. MOLINO, (a) Connexions et G-structures sur les variétés feuilletées (Bull. Sc. Math., Paris, 92, 1968, p. 59-63) ; (b) Propriétés cohomologiques et propriétés topologiques des feuilletages à C.T.P. (Topology, 12, 1973, p. 317-325) ; (c) Sur la géométrie transverse des feuilletages (Ann. Inst. Fourier, XXV, 1975, p. 279-284) ; (d) Feuilletages transversalement parallélisables et feuilletages de Lie (C.R. Acad. Sc., Paris, t. 282, série A, 1976, p. 99-101). Zbl0314.57015MR38 #2807
  12. [11] G. REEB, Sur certaines propriétés topologiques des variétés feuilletées, Hermann, Paris, 1952. Zbl0049.12602MR14,1113a
  13. [12] B. REINHART, Foliated manifolds with bundle-like metrics (Annals of Maths., 69, 1959, p. 119-132 Zbl0122.16604MR21 #6004
  14. [13] H. SUSSMANN, A generalization of the closed subgroup theorem to quotients of arbitrary manifolds (J. of Differential Geometry, 10, (1), 1975, p. 151-166). Zbl0342.58004MR54 #13964

Citations in EuDML Documents

top
  1. Pierre Dazord, 4 Feuilletages et mécanique hamiltonienne
  2. Robert Wolak, Foliations admitting transverse systems of differential equations
  3. Vlad Sergiescu, Cohomologie basique et dualité des feuilletages riemanniens
  4. Jan Kubarski, The Chern-Weil Homomorphism of Regular Lie Algebroids
  5. Robert A. Blumenthal, James J. Hebda, De Rham decomposition theorems for foliated manifolds
  6. Jan Kubarski, The Characteristic Classes of Flat and of Partially Flat Regular Lie Algebroids over Foliated Manifolds
  7. Jan Kubarski, Characteristic Classes of Flat and of Partially Flat Regular Lie Algebroids over Foliated Manifolds
  8. Jan Kubarski, Algebroid nature of the characteristic classes of flat bundles
  9. Vincent Cavalier, Pseudogroupes complexes quasi parallélisés de dimension un
  10. Jan Kubarski, The Euler-Poincaré-Hopf theorem for flat connections in some transitive Lie algebroids

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.