Métriques kählériennes et fibrés holomorphes

E. Calabi

Annales scientifiques de l'École Normale Supérieure (1979)

  • Volume: 12, Issue: 2, page 269-294
  • ISSN: 0012-9593

How to cite

top

Calabi, E.. "Métriques kählériennes et fibrés holomorphes." Annales scientifiques de l'École Normale Supérieure 12.2 (1979): 269-294. <http://eudml.org/doc/82036>.

@article{Calabi1979,
author = {Calabi, E.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {complex manifolds; analytic fibre bundle; Kähler manifold; Hermitian metric; constant Ricci curvature; Ricci flat metrics; holonomy group},
language = {fre},
number = {2},
pages = {269-294},
publisher = {Elsevier},
title = {Métriques kählériennes et fibrés holomorphes},
url = {http://eudml.org/doc/82036},
volume = {12},
year = {1979},
}

TY - JOUR
AU - Calabi, E.
TI - Métriques kählériennes et fibrés holomorphes
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1979
PB - Elsevier
VL - 12
IS - 2
SP - 269
EP - 294
LA - fre
KW - complex manifolds; analytic fibre bundle; Kähler manifold; Hermitian metric; constant Ricci curvature; Ricci flat metrics; holonomy group
UR - http://eudml.org/doc/82036
ER -

References

top
  1. [1] V. A. BELINSKIǏ, G. W. GIBBONS, D. N. PAGE et C. N. POPE, Asymptotically Euclidean Bianchi IX Metrics in Quantum Gravity (Phys. Lett., vol. 76 B, 1978, p. 433-435). MR58 #14900
  2. [2] A. BLANCHARD, Sur les variétés analytiques complexes (Ann. scient. Éc. Norm. Sup., Paris, vol. 73, 1956, p. 157-202). Zbl0073.37503MR19,316e
  3. [3] B. ECKMANN et A. FRÖLICHER, Sur l'intégrabilité des structures presque complexes (C.R. Acad. Sc., Paris, t. 237, 1951, p. 2284-2286). Zbl0042.40503MR13,75f
  4. [4] T. EGUCHI et A. J. HANSON, Asymptotically Flat Self-dual Solutions to Euclidean Gravity (Phys. Lett., vol. 74 B, 1978, p. 249-251). 
  5. [5] A. FRÖLICHER et A. NIJENHUIS, Theory of Vector-Valued Differential Forms Part I (Proc. Kon. Nad. Akad. v. Wet., vol. 59 A, 1956, p. 338-359). Zbl0079.37502
  6. [6] G. W. GIBBONS et C. N. POPE, CP² as a Gravitational Instanton (Comm. Math. Phys, vol. 61, 1978, p. 239-248). Zbl0389.53013MR58 #20208
  7. [7] S. KOBAYASHI et K. NOMIZU, Foundations of Differential Geometry, New York, John Wiley-Interscience, vol. II, 1969, p. 178-185. Zbl0175.48504MR38 #6501
  8. [8] A. LICHNEROWICZ, Théorie globale des connexions et des groupes d'holonomie, Roma, Cremonese, 1955, p. 218-232 et p. 258-261. 
  9. [9] S. B. MYERS, Riemannian Manifolds with Positive Mean Curvature (Duke Math. J., vol. 8, 1941, p. 401-404). Zbl0025.22704MR3,18fJFM67.0673.01
  10. [10] A. NEWLANDER et L. NIRENBERG, Complex Analytic Coordinates in Almost Complex Manifolds (Ann. Math., vol. 65, 1957, p. 391-404). Zbl0079.16102MR19,577a
  11. [11] A. NIJENHUIS, Jacobi-type Identities for Bilinear Differential Concomitants of Certain Tensor Fields (Proc. Kon. Nad. Akad. v. Wet., vol. 58 A, 1955, p. 390-403). Zbl0068.15001MR17,661c
  12. [12] A. WEIL, Introduction à l'étude des variétés kählériennes, Paris, Hermann, Act. Sc. Ind., vol. 1267, 1958, p. 30-43 et p. 83-102). Zbl0137.41103MR22 #1921
  13. [13] S. T. YAU, On the Ricci Curvature of a Compact Kähler Manifold and the Complex Monge-Ampère Equation (Comm. Pure Appl. Math., vol. 31, 1978, p. 339-411). Zbl0369.53059MR81d:53045
  14. [14] M. BERGER, Remarques sur les groupes d'holonomie des variétés riemanniennes, (C.R. Acad. Sc., Paris, t. 262, série A, 1966, p. 1316-1318). Zbl0151.28301MR34 #746
  15. [15] D. V. ALEKSEEVSKIǏ, Classification of Quaternionic Spaces with Transitive Solvable Groups of Motions (Math. Izv. U.S.S.R., vol. 9, n° 2, 1975, p. 297-339). Zbl0324.53038
  16. [16] R. B. BROWN et A. GRAY, Riemannian Manifolds with Holonomy Group Spin (9), Differential Geometry (in honor of Kentaro Yano), Tokyo, Kinokuniya, 1972, p. 41-59. Zbl0245.53020MR48 #7159
  17. [17] N. HITCHIN, Polygons and Gravitons [Proc. Cambr. Phil. Soc. (à paraître), 1979]. Zbl0405.53016MR80h:53047

Citations in EuDML Documents

top
  1. Florin Alexandru Belgun, Nicolas Ginoux, Hans-Bert Rademacher, A Singularity Theorem for Twistor Spinors
  2. Dennis M. Deturck, Norihito Koiso, Uniqueness and non-existence of metrics with prescribed Ricci curvature
  3. L.Bérard Bergery, A. Ikemakhen, Sur l’holonomie des variétés pseudo-riemanniennes de signature ( n , n )
  4. Nigel Hitchin, Hyperkähler manifolds
  5. Misha Verbitsky, Hyperholomorphic connections on coherent sheaves and stability
  6. S. M. Salamon, Differential geometry of quaternionic manifolds
  7. D. Burns, P. De Bartolomeis, Applications harmoniques stables dans P n
  8. Xuerong Qi, Linfen Cao, Xingxiao Li, New hyper-Käahler structures on tangent bundles
  9. Olivier Biquard, Paul Gauduchon, Géométrie hyperkählérienne des espaces hermitiens symétriques complexifiés
  10. Christoph Böhm, Non-compact cohomogeneity one Einstein manifolds

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.