On the dynamics of polynomial-like mappings
Adrien Douady; John Hamal Hubbard
Annales scientifiques de l'École Normale Supérieure (1985)
- Volume: 18, Issue: 2, page 287-343
- ISSN: 0012-9593
Access Full Article
topHow to cite
topDouady, Adrien, and Hubbard, John Hamal. "On the dynamics of polynomial-like mappings." Annales scientifiques de l'École Normale Supérieure 18.2 (1985): 287-343. <http://eudml.org/doc/82160>.
@article{Douady1985,
author = {Douady, Adrien, Hubbard, John Hamal},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Mandelbrot set; polynomial-like mapping; quasiconformal map},
language = {eng},
number = {2},
pages = {287-343},
publisher = {Elsevier},
title = {On the dynamics of polynomial-like mappings},
url = {http://eudml.org/doc/82160},
volume = {18},
year = {1985},
}
TY - JOUR
AU - Douady, Adrien
AU - Hubbard, John Hamal
TI - On the dynamics of polynomial-like mappings
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1985
PB - Elsevier
VL - 18
IS - 2
SP - 287
EP - 343
LA - eng
KW - Mandelbrot set; polynomial-like mapping; quasiconformal map
UR - http://eudml.org/doc/82160
ER -
References
top- [A] L. AHLFORS, Lectures on Quasi-Conformal Mappings, Van Nostrand, 1966. Zbl0138.06002MR34 #336
- [A-B] L. AHLFORS and L. BERS, The Riemann Mappings Theorem for Variable Metrics (Annals of Math., Vol. 72-2, 1960, pp. 385-404). Zbl0104.29902MR22 #5813
- [B-R] L. BERS and ROYDEN, Holomorphic Families of Injections, [Acta Math. (to appear)]. Zbl0619.30027
- [Bl] P. BLANCHARD, Complex Analytic Dynamics on the Riemann Sphere, Preprint, M.I.A., Minneapolis, 1983. Bulletin AMS, 1984.
- [Br] H. BROLIN, Invariant Sets Under Iteration of Rational Functions (Arkiv for Math., Vol. 6, 1966, pp. 103-144). Zbl0127.03401MR33 #2805
- [C] P. COLLET, Local C∞-Conjugacy on the Julia Set for Some Holomorphic Perturbations of z↦z², preprint, M.I.A., Minneapolis [J. Math. pures et app. (to appear)].
- [D] A. DOUADY, Systèmes dynamiques holomorphes (Séminaire Bourbaki, 599, November 1982) [Asterisque (to appear)]. Zbl0532.30019
- [D-H] A. DOUADY and J. HUBBARD, Itération des polynômes quadratiques complexes (C.R. Acad. Sc., T. 294, série I, 1982, pp. 123-126). Zbl0483.30014MR83m:58046
- [E-E] J.-P. ECKMANN and H. EPSTEIN (to appear).
- [E-F] Cl. EARLE and R. FOWLER, Holomorphic Families of Open Riemann Surfaces (to appear). Zbl0537.30036
- [F] P. FATOU, Sur les équations fonctionnelles (Bull. Soc. math. Fr., T. 47, 1919, pp. 161-271 ; T. 47, 1920, pp. 33-94 and 208-314). Zbl47.0921.02JFM47.0921.02
- [G] R. GODEMENT, Topologie Algébrique et Théorie des Faisceaux, Hermann, Paris, 1958. Zbl0080.16201MR21 #1583
- [J] G. JULIA, Mémoires sur l'itération des fonctions rationnelles (J. Math. pures et app., 1918). See also Œuvres Complètes de G. Julia, Gauthier-Villars, Vol. 1, pp. 121-139. JFM46.0520.06
- [L-V] O. LEHTO and VIRTAANEN, Quasi-Conformal Mappings in the Plane, Springer Verlag, 1973. Zbl0267.30016
- [M] B. MANDELBROT, Fractal Aspects of the Iteration of zˇλz(l - z) (Annals N. Y. Acad. Sc., Vol. 357, 1980, pp. 249-259). Zbl0478.58017
- [M-S-S] R. MAÑ;E, P. SAD and D. SULLIVAN, On the Dynamics of Rational Maps [Ann. scient. Ec. Norm. Sup. (to appear)]. Zbl0524.58025
- [Ri] S. RICKMAN, Remonability Theorems for Quasiconformal Mappings [Ann. Ac. Scient. Fenn., 449, p. 1-8, (1969)]. Zbl0189.09301MR40 #7443
- [R] W. RUDIN, Real and Complex Analysis, McGraw Hill, 1966, 1974. Zbl0142.01701
- [S1] D. SULLIVAN, Conformal Dynamical Systems, preprint, I.H.E.S. ; Geometric Dynamics (Springer Lecture Notes).
- [S2] D. SULLIVAN, Quasi-Conformal Homeomorphisms and Dynamics, I, II, III, preprint I.H.E.S.
- [S-T] D. SULLIVAN and W. THURSTON, Holomorphically Moving Sets, preprint I.H.E.S., 1982.
Citations in EuDML Documents
top- Lluís Alsedà, Núria Fagella, Dynamics on Hubbard trees
- Jeremy Kahn, Mikhail Lyubich, A priori bounds for some infinitely renormalizable quadratics: II. Decorations
- Karsten Keller, A note on the structure of quadratic Julia sets
- Xavier Buff, Ensembles de Julia de mesure positive
- I. Popovici, Alexander Volberg, Rigidity of harmonic measure
- Lei Tan, Branched coverings and cubic Newton maps
- Sebastian van Strien, Misiurewicz maps unfold generically (even if they are critically non-finite)
- Mikhail Lyubich, Michael Yampolsky, Dynamics of quadratic polynomials : complex bounds for real maps
- Jacek Graczyk, Grzegorz Świątek, Induced expansion for quadratic polynomials
- Alexis Marin, Géométrie des polynômes. Coût global moyen de la méthode de Newton
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.