Spectral properties of Schrödinger operators and scattering theory

Shmuel Agmon

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1975)

  • Volume: 2, Issue: 2, page 151-218
  • ISSN: 0391-173X

How to cite

top

Agmon, Shmuel. "Spectral properties of Schrödinger operators and scattering theory." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 2.2 (1975): 151-218. <http://eudml.org/doc/83687>.

@article{Agmon1975,
author = {Agmon, Shmuel},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {151-218},
publisher = {Scuola normale superiore},
title = {Spectral properties of Schrödinger operators and scattering theory},
url = {http://eudml.org/doc/83687},
volume = {2},
year = {1975},
}

TY - JOUR
AU - Agmon, Shmuel
TI - Spectral properties of Schrödinger operators and scattering theory
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1975
PB - Scuola normale superiore
VL - 2
IS - 2
SP - 151
EP - 218
LA - eng
UR - http://eudml.org/doc/83687
ER -

References

top
  1. [1] S. Agmon, Lectures on elliptic boundary value problems, Van Nostrand, Math. Studies, 2 (1965). Zbl0142.37401MR178246
  2. [2] P. Alsholm - G. Schmidt, Spectral and scattering theory for Schrödinger operators, Arch. Rational Mech. Anal., 40 (1971), pp. 281-311. Zbl0226.35076MR279631
  3. [3] N. Dunford - J.T. Schwartz, Linear operators, Part II, Interscience, New York - London, 1963. Zbl0128.34803MR188745
  4. [4] U. Greifenegger - K. Jörgens - J. Weidmann - M. Winkler, Streutheorie für Schrödinger-Operatoren, to appear. 
  5. [5] T. Ikebe, Eigenfunction expansions associated with the Schrödinger operators and their applications to scattering theory, Arch. Rational Mech. Anal., 5 (1960), pp. 1-34. Zbl0145.36902MR128355
  6. [6] T. Kato, Growth properties of solutions of the reduced wave equation with a variable coefficient, Comm. Pure Appl. Math., 12 (1959), pp. 403-425. Zbl0091.09502MR108633
  7. [7] T. Kato, Perturbation theory for linear operators, Springer, 1966. Zbl0148.12601
  8. [8] T. Kato, Some results on potential scattering, Proc. International Conf. Functional Analysis and Related Topics, Tokyo, 1969, Tokyo University Press, 1970, pp. 206-215. Zbl0207.45303MR268713
  9. [9] T. Kato, Scattering theory and perturbation of continuous spectra, Proc. International Congress Math., Nice, 1970, Gauthier-Villars, vol. 1 (1971), pp. 135-140. Zbl0244.47003MR473876
  10. [10] T. Kato, S.T. Kuroda - Theory of simple scattering and eigenfunction expansions, Functional Analysis and Related Fields, edited by F. E. Browder, Springer, 1970, pp. 99-131. Zbl0224.47004MR385603
  11. [11] S.T. Kuroda, On the existence and the unitary property of the scattering operator, Nuovo Cimento, 12 (1959), pp. 431-454. Zbl0084.44801
  12. [12] S.T. Kuroda, Spectral representations and the scattering theory for Schrödinger operators, Proc. International Congress Math., Nice, 1970, Gauthier-Villars, vol. 2 (1971), pp. 441-445. Zbl0241.47006MR425384
  13. [13] S.T. Kuroda, Scattering theory for differential operators - I: Operator theory, J. Math. Soc. Japan, 25 (1973), pp. 75-104. Zbl0245.47006MR326435
  14. [14] S.T. Kuroda, Scattering theory for differential operators - II : Self-adjoint elliptic operators, J. Math. Soc. Japan, 25 (1973), pp. 222-234. Zbl0252.47007MR326436
  15. [15] J.L. Lions - E. Magenes, Problèmes aux limites non homogènes et applications, vol. 1, Ed. Dunod, Paris, 1968. Zbl0165.10801MR247243
  16. [16] J. Milnor, Singular points of complex hypersurfaces, Ann. Math. Studies, vol. 61, Princeton University Press and the University of Tokyo Press, Princeton, 1968. Zbl0184.48405MR239612
  17. [17] A. Ja. Povzner, The expansion of arbitrary functions in terms of eigenfunctions of the operator —Δu + cu, Math. Sbornik, 32 (1953), pp. 109-156; A.M.S. Translations, Series 2, 60 (1967), pp. 1-49. Zbl0179.14504
  18. [18] P.A. Rejto, Some potential perturbations of the Laplacian, Helvetica Physica. Acta, 44 (1971), pp. 708-736. MR359589
  19. [19] M. Schechter, Spectra of partial differential operators, North Holland, 1971. Zbl0225.35001MR447834
  20. [20] M. Schechter, Scattering theory for elliptic operators of arbitrary order, Comm. Mat. Helvetici, 49 (1974), pp. 84-113. Zbl0288.47012MR367484
  21. [21] J.R. Schulenberger - C.H. Wilcox, Eigenfunction expansions and scattering theory for wave propagation problems of classical physics, Arch. Rational Mech. Anal., 46 (1972), pp. 280-320. Zbl0252.47047MR369948
  22. [22] N. Shenk - D. Thoe, Eigenfunction expansions and scattering theory for perturbations of - Δ, The Rocky Mountain J. of Math., 1 (1971), pp. 89-125. Zbl0254.47017
  23. [23] D. Thoe, Eigenfunction expansions associated with Schrödinger operators in Rn, n ≽ 4, Arch. Rational Mech. Anal., 26 (1967), pp. 335-356. Zbl0168.12501

Citations in EuDML Documents

top
  1. L. Hörmander, Théorie de la diffusion à courte portée pour des opérateurs à caractéristiques simples
  2. D. R. Yafaev, On the asymptotics of scattering phases for the Schrödinger equation
  3. Erik Skibsted, Truncated Gamow functions and the exponential decay law
  4. Vladimir Georgiev, Nicola Visciglia, L - L 2 weighted estimate for the wave equation with potential
  5. Marius Beceanu, Potentiels variables et équations dispersives
  6. J. Ginibre, Théorie de la diffusion pour l'équation de Schrödinger
  7. L. Guillopé, Asymptotique de la phase de diffusion pour l’opérateur de Schrödinger dans R n
  8. Francis Nier, Formulation variationnelle de systèmes Schrödinger-Poisson en dimension d 3
  9. Yves Dermenjian, Jean-Claude Guillot, Théorie spectrale de la propagation des ondes acoustiques dans un milieu stratifié perturbe
  10. Vladimir Georgiev, Resolvent estimates and the decay of the solution to the wave equation with potential

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.