Spectral properties of Schrödinger operators and scattering theory
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1975)
- Volume: 2, Issue: 2, page 151-218
- ISSN: 0391-173X
Access Full Article
topHow to cite
topAgmon, Shmuel. "Spectral properties of Schrödinger operators and scattering theory." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 2.2 (1975): 151-218. <http://eudml.org/doc/83687>.
@article{Agmon1975,
author = {Agmon, Shmuel},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {151-218},
publisher = {Scuola normale superiore},
title = {Spectral properties of Schrödinger operators and scattering theory},
url = {http://eudml.org/doc/83687},
volume = {2},
year = {1975},
}
TY - JOUR
AU - Agmon, Shmuel
TI - Spectral properties of Schrödinger operators and scattering theory
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1975
PB - Scuola normale superiore
VL - 2
IS - 2
SP - 151
EP - 218
LA - eng
UR - http://eudml.org/doc/83687
ER -
References
top- [1] S. Agmon, Lectures on elliptic boundary value problems, Van Nostrand, Math. Studies, 2 (1965). Zbl0142.37401MR178246
- [2] P. Alsholm - G. Schmidt, Spectral and scattering theory for Schrödinger operators, Arch. Rational Mech. Anal., 40 (1971), pp. 281-311. Zbl0226.35076MR279631
- [3] N. Dunford - J.T. Schwartz, Linear operators, Part II, Interscience, New York - London, 1963. Zbl0128.34803MR188745
- [4] U. Greifenegger - K. Jörgens - J. Weidmann - M. Winkler, Streutheorie für Schrödinger-Operatoren, to appear.
- [5] T. Ikebe, Eigenfunction expansions associated with the Schrödinger operators and their applications to scattering theory, Arch. Rational Mech. Anal., 5 (1960), pp. 1-34. Zbl0145.36902MR128355
- [6] T. Kato, Growth properties of solutions of the reduced wave equation with a variable coefficient, Comm. Pure Appl. Math., 12 (1959), pp. 403-425. Zbl0091.09502MR108633
- [7] T. Kato, Perturbation theory for linear operators, Springer, 1966. Zbl0148.12601
- [8] T. Kato, Some results on potential scattering, Proc. International Conf. Functional Analysis and Related Topics, Tokyo, 1969, Tokyo University Press, 1970, pp. 206-215. Zbl0207.45303MR268713
- [9] T. Kato, Scattering theory and perturbation of continuous spectra, Proc. International Congress Math., Nice, 1970, Gauthier-Villars, vol. 1 (1971), pp. 135-140. Zbl0244.47003MR473876
- [10] T. Kato, S.T. Kuroda - Theory of simple scattering and eigenfunction expansions, Functional Analysis and Related Fields, edited by F. E. Browder, Springer, 1970, pp. 99-131. Zbl0224.47004MR385603
- [11] S.T. Kuroda, On the existence and the unitary property of the scattering operator, Nuovo Cimento, 12 (1959), pp. 431-454. Zbl0084.44801
- [12] S.T. Kuroda, Spectral representations and the scattering theory for Schrödinger operators, Proc. International Congress Math., Nice, 1970, Gauthier-Villars, vol. 2 (1971), pp. 441-445. Zbl0241.47006MR425384
- [13] S.T. Kuroda, Scattering theory for differential operators - I: Operator theory, J. Math. Soc. Japan, 25 (1973), pp. 75-104. Zbl0245.47006MR326435
- [14] S.T. Kuroda, Scattering theory for differential operators - II : Self-adjoint elliptic operators, J. Math. Soc. Japan, 25 (1973), pp. 222-234. Zbl0252.47007MR326436
- [15] J.L. Lions - E. Magenes, Problèmes aux limites non homogènes et applications, vol. 1, Ed. Dunod, Paris, 1968. Zbl0165.10801MR247243
- [16] J. Milnor, Singular points of complex hypersurfaces, Ann. Math. Studies, vol. 61, Princeton University Press and the University of Tokyo Press, Princeton, 1968. Zbl0184.48405MR239612
- [17] A. Ja. Povzner, The expansion of arbitrary functions in terms of eigenfunctions of the operator —Δu + cu, Math. Sbornik, 32 (1953), pp. 109-156; A.M.S. Translations, Series 2, 60 (1967), pp. 1-49. Zbl0179.14504
- [18] P.A. Rejto, Some potential perturbations of the Laplacian, Helvetica Physica. Acta, 44 (1971), pp. 708-736. MR359589
- [19] M. Schechter, Spectra of partial differential operators, North Holland, 1971. Zbl0225.35001MR447834
- [20] M. Schechter, Scattering theory for elliptic operators of arbitrary order, Comm. Mat. Helvetici, 49 (1974), pp. 84-113. Zbl0288.47012MR367484
- [21] J.R. Schulenberger - C.H. Wilcox, Eigenfunction expansions and scattering theory for wave propagation problems of classical physics, Arch. Rational Mech. Anal., 46 (1972), pp. 280-320. Zbl0252.47047MR369948
- [22] N. Shenk - D. Thoe, Eigenfunction expansions and scattering theory for perturbations of - Δ, The Rocky Mountain J. of Math., 1 (1971), pp. 89-125. Zbl0254.47017
- [23] D. Thoe, Eigenfunction expansions associated with Schrödinger operators in Rn, n ≽ 4, Arch. Rational Mech. Anal., 26 (1967), pp. 335-356. Zbl0168.12501
Citations in EuDML Documents
top- L. Hörmander, Théorie de la diffusion à courte portée pour des opérateurs à caractéristiques simples
- D. R. Yafaev, On the asymptotics of scattering phases for the Schrödinger equation
- Erik Skibsted, Truncated Gamow functions and the exponential decay law
- Vladimir Georgiev, Nicola Visciglia, weighted estimate for the wave equation with potential
- Marius Beceanu, Potentiels variables et équations dispersives
- J. Ginibre, Théorie de la diffusion pour l'équation de Schrödinger
- L. Guillopé, Asymptotique de la phase de diffusion pour l’opérateur de Schrödinger dans
- Francis Nier, Formulation variationnelle de systèmes Schrödinger-Poisson en dimension
- Yves Dermenjian, Jean-Claude Guillot, Théorie spectrale de la propagation des ondes acoustiques dans un milieu stratifié perturbe
- Vladimir Georgiev, Resolvent estimates and the decay of the solution to the wave equation with potential
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.