Mesures de Carleson d’ordre α et solutions au bord de l’équation ¯

Eric Amar; Aline Bonami

Bulletin de la Société Mathématique de France (1979)

  • Volume: 107, page 23-48
  • ISSN: 0037-9484

How to cite

top

Amar, Eric, and Bonami, Aline. "Mesures de Carleson d’ordre $\alpha $ et solutions au bord de l’équation $\overline{\partial }$." Bulletin de la Société Mathématique de France 107 (1979): 23-48. <http://eudml.org/doc/87346>.

@article{Amar1979,
author = {Amar, Eric, Bonami, Aline},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Carleson Measures; Strictly Pseudoconvex Domains; Anti Delta Problem; Lipschitz Space; Balayee; Bounded Measures},
language = {fre},
pages = {23-48},
publisher = {Société mathématique de France},
title = {Mesures de Carleson d’ordre $\alpha $ et solutions au bord de l’équation $\overline\{\partial \}$},
url = {http://eudml.org/doc/87346},
volume = {107},
year = {1979},
}

TY - JOUR
AU - Amar, Eric
AU - Bonami, Aline
TI - Mesures de Carleson d’ordre $\alpha $ et solutions au bord de l’équation $\overline{\partial }$
JO - Bulletin de la Société Mathématique de France
PY - 1979
PB - Société mathématique de France
VL - 107
SP - 23
EP - 48
LA - fre
KW - Carleson Measures; Strictly Pseudoconvex Domains; Anti Delta Problem; Lipschitz Space; Balayee; Bounded Measures
UR - http://eudml.org/doc/87346
ER -

References

top
  1. [1] COIFMAN (R.) et WEISS (G.). — Analyse harmonique non commutative sur certains espaces homogènes. — Berlin, Springer-Verlag, 1971 (Lecture Notes in Mathematics, 242). Zbl0224.43006MR58 #17690
  2. [2] DUREN (P.). — Extension of a theorem of Carleson, Bull. Amer. math. Soc., t. 75, 1969, p. 143-146. Zbl0184.30503MR39 #2989
  3. [3] FOLLAND (G.) and STEIN (E. M.). — Estimates for the A T T b-complex and analysis on the Heisenberg group, Comm. on pure and appl. Math., t. 27, 1974, p. 429-522. Zbl0293.35012MR51 #3719
  4. [4] HÖRMANDER (L.). — Lp estimates for (pluri)-subharmonic functions, Math. Scand., t. 20, 1967, p. 65-78. Zbl0156.12201
  5. [5] JONES (P.). — Extension theorems for BMO (à paraître). 
  6. [6] PHONG (D.) and STEIN (E.). — Estimates for the Bergman and Szegö projections on strongly pseudo-convex domains, Duke math. J., t. 44, 1977, p. 695-704. Zbl0392.32014MR56 #8916
  7. [7] RUDIN (W.). — The radial variation of analytic functions, Duke math. J., t. 22, 1955, p. 235-242. Zbl0064.31105MR18,27g
  8. [8] SKODA (H.). — Valeurs au bord pour l'opérateur d"..., Bull. Soc. math. Fr., t. 104, 1976, p. 225-299. Zbl0351.31007MR56 #8913
  9. [9] STEIN (E.). — Boundary behavior of holomorphic functions of several complex variables. — Princeton University Press, 1972 (Mathematical Notes Princeton University Press). Zbl0242.32005MR57 #12890
  10. [10] STEIN (E.). — Singular integrals and estimates for the Cauchy Riemann equations, Bull. Amer. math. Soc., t. 79, 1973, p. 440-445. Zbl0257.35040MR47 #3851
  11. [11] STEIN (E.). — Singular integrals and differentiability properties of functions. — Princeton, Princeton University Press, 1970 (Princeton mathematical Series, 30). Zbl0207.13501MR44 #7280
  12. [12] STROMBERG (J.). — Communication orale. 
  13. [13] VAROPOULOS (N.). — BMO functions and the A T T equation, Pacific J. Math., t. 71, 1977, p. 221-273. Zbl0371.35035MR58 #22639a

Citations in EuDML Documents

top
  1. E. Amar, C. Menini, Universal divisors in Hardy spaces
  2. Eric Amar, Extension de formes ¯ b fermées et solutions de l’équation ¯ b u = f
  3. Luz M. Fernández-Cabrera, José L. Torrea, The two weight problem for operators in the upper half-plane
  4. Philippe Charpentier, Formules explicites pour les solutions minimales de l’équation ¯ u = f dans la boule et dans le polydisque de n
  5. Anne Cumenge, Extension dans des classes de Hardy de fonctions holomorphes et estimations de type «mesures de Carleson» pour l’équation ¯
  6. J. M. Ortega, Joan Fàbrega, Pointwise multipliers and corona type decomposition in B M O A

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.