Hamiltoniens périodiques et images convexes de l'application moment

Thomas Delzant

Bulletin de la Société Mathématique de France (1988)

  • Volume: 116, Issue: 3, page 315-339
  • ISSN: 0037-9484

How to cite

top

Delzant, Thomas. "Hamiltoniens périodiques et images convexes de l'application moment." Bulletin de la Société Mathématique de France 116.3 (1988): 315-339. <http://eudml.org/doc/87558>.

@article{Delzant1988,
author = {Delzant, Thomas},
journal = {Bulletin de la Société Mathématique de France},
keywords = {periodic Hamiltonians; momentum mapping; symplectic manifold},
language = {fre},
number = {3},
pages = {315-339},
publisher = {Société mathématique de France},
title = {Hamiltoniens périodiques et images convexes de l'application moment},
url = {http://eudml.org/doc/87558},
volume = {116},
year = {1988},
}

TY - JOUR
AU - Delzant, Thomas
TI - Hamiltoniens périodiques et images convexes de l'application moment
JO - Bulletin de la Société Mathématique de France
PY - 1988
PB - Société mathématique de France
VL - 116
IS - 3
SP - 315
EP - 339
LA - fre
KW - periodic Hamiltonians; momentum mapping; symplectic manifold
UR - http://eudml.org/doc/87558
ER -

References

top
  1. [A-M] ABRAHAM (R.) and MARSDEN (J.). — Foundations of mechanics, 2ième édition. Reading, Benjamin Cummings, 1978. Zbl0393.70001MR81e:58025
  2. [A1] ATIYAH (M.F.). — Convexity and commuting hamiltonians, Bull. London Math. Soc., t. 14, 1982, p. 1-15. Zbl0482.58013MR83e:53037
  3. [A2] ATIYAH (M.F.). — Angular momentum, convex polyedra and algebraic geometry, Proc. Edinburgh Math. Soc., t. 26, 1983, p. 121-138. Zbl0521.58026MR85a:58027
  4. [A.M.M.] ARMS (J.), MARSDEN (J.) and MONCRIEF (V.). — Symmetry and bifurcation of mommentum mapping, Comm. Math. Phys., t. 78, 1981, p. 455-478. Zbl0486.58008MR82m:58028
  5. [Da] DANILOV (V.I.). — The geometry of toric varieties, Russian Math. Surveys, 33.2, 1978, pp. 97-154. — (Uspekhi Mat. Nauk, 33.2, 1978, pp. 85-134). Zbl0425.14013MR80g:14001
  6. [De] DELZANT (T.). — Thèse, Paris VI, 1986. 
  7. [Du] DUISTERMAAT (J.). — Convexity and tightness for restrictions of hamiltonian functions to fixed point of an antisymplectic involution, Trans. Amer. Math. Soc., t. 275, t. 1, 1983, p. 417-429. Zbl0504.58020MR84c:53035
  8. [D-H] DUISTERMAAT (J.) and HECKMAN (G.). — On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math., t. 67, 1982, p. 259-268. Zbl0503.58015MR84h:58051a
  9. [F] FRANKEL (T.). — Fixed points and torsion on Kaehler manifolds, Ann. of Math., t. 70, 1959, p. 1-8. Zbl0088.38002MR24 #A1730
  10. [G-S] GUILLEMIN (V.) and STERNBERG (S.). — Convexity properties of the moment mapping, Invent. Math., t. 67, 1982, p. 491-513. Zbl0503.58017MR83m:58037
  11. [Mi] MILNOR (J.). — Morse theory. — Princenton, Ann. of Math. Studies 51, 1968. 
  12. [R] REEB (G.). — Sur certaines propriétés topologiques des variétés feuilletées. Paris, Hermann, 1952. Zbl0049.12602MR14,1113a
  13. [S] SOURIAU (J.M.). — Structure des systèmes dynamiques. — Paris, Dunod, 1970. Zbl0186.58001MR41 #4866
  14. [T] TEISSIER (B.). — Variétés toriques et polytopes, Sém. Bourbaki, exp. n° 565, 1980-1981. Zbl0494.52010
  15. [W1] WEINSTEIN (A.). — Lectures on symplectic manifolds, [AMS Reg. Conf. in Math. n° 29], 1977, Symplectic manifolds and their lagrangian submanifolds, Adv. in Math., 6, 1971, pp. 329-346. Zbl0213.48203

Citations in EuDML Documents

top
  1. Patrick Iglesias, Les S O ( 3 ) -variétés symplectiques et leur classification en dimension 4
  2. Akio Hattori, Almost complex toric manifolds and positive line bundles
  3. Jean-Claude Hausmann, Susan Tolman, Maximal Hamiltonian tori for polygon spaces
  4. Bernard Shiffman, Tatsuya Tate, Steve Zelditch, Distribution laws for integrable eigenfunctions
  5. Nguyen Tien Zung, Symplectic topology of integrable hamiltonian systems, I : Arnold-Liouville with singularities
  6. Johannes Jisse Duistermaat, Alvaro Pelayo, Symplectic torus actions with coisotropic principal orbits
  7. Ivan V. Losev, Proof of the Knop conjecture
  8. Emmanuel Peyre, Points de hauteur bornée et géométrie des variétés
  9. Eva Miranda, Integrable systems and group actions
  10. Emmanuel Peyre, Points de hauteur bornée, topologie adélique et mesures de Tamagawa

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.