An abstract setting for homotopy pushouts and pullbacks

Christopher B. Spencer

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1977)

  • Volume: 18, Issue: 4, page 409-429
  • ISSN: 1245-530X

How to cite

top

Spencer, Christopher B.. "An abstract setting for homotopy pushouts and pullbacks." Cahiers de Topologie et Géométrie Différentielle Catégoriques 18.4 (1977): 409-429. <http://eudml.org/doc/91190>.

@article{Spencer1977,
author = {Spencer, Christopher B.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
language = {eng},
number = {4},
pages = {409-429},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {An abstract setting for homotopy pushouts and pullbacks},
url = {http://eudml.org/doc/91190},
volume = {18},
year = {1977},
}

TY - JOUR
AU - Spencer, Christopher B.
TI - An abstract setting for homotopy pushouts and pullbacks
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1977
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 18
IS - 4
SP - 409
EP - 429
LA - eng
UR - http://eudml.org/doc/91190
ER -

References

top
  1. 1 A. Bastiani and C. Ehresmann, Multiple functors I, Cahiers Topo. et Géo. Diff15-3 (1974). Zbl0332.18005MR379626
  2. 2 R. Brown and P.J. Higgins, On the connection between the second relative homotopy groups of some spaces ( To appear). Zbl0405.55015
  3. 3 R. Brown and C.B. Spencer, Double groupoids and crossed modules, Cahiers Topo. et Géo. Diff.17-4 (1976), 343- 362. Zbl0344.18004MR440553
  4. 4 P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Springer, Berlin, 1967. Zbl0186.56802MR210125
  5. 5 J.W. Gray, FormalCategory theory, Lecture Notes in Math. 391 (1974). Zbl0285.18006
  6. 6 G.M. Kelly and R. Street, Review of the elements of 2-categories, Lecture Notes in Math.420, Springer (1974), 75-103. Zbl0334.18016MR357542
  7. 7 M. Mather, Pullbacks in homotopy theory ( To appear). Zbl0351.55005MR167984
  8. 8 M. Mather, A generalisation of Ganea's theorem on the mapping cone of the inclusion of a fibre ( To appear). Zbl0324.55008
  9. 9 M. Mather, Hurewicz theorems for pairs and squares, Math. Scand.32 (1973), 269-272. Zbl0279.55008MR356040
  10. 10 Y. Nomura, On extensions of triads, Nagoya Math. J.27 (1966), 249- 277. Zbl0145.20102MR203732
  11. 11 Y. Nomura, The Whitney join and its dual, Osaka J. Math.7 (1970), 353-373. Zbl0211.55301MR281208
  12. 12 P.H. Palmquist, The double category of adjoint squares, Lecture Notes in Math.195, Springer (1971), 123-153. Zbl0263.18004MR289600
  13. 13 J.W. Rutter, Fibred joins of fibrations and maps, I', Bull. London Math. Soc.4 (1972), 187- 190. Zbl0246.55009MR319190
  14. 14 J.W. Rutter, Fibred joins of fibrations and maps, II', J. London Math. Soc. ( 2 ) 8 (1974), 453- 459. Zbl0288.55014MR348744
  15. 15 R.M. Vogt, A note on homotopy equivalences, Proc. AMS32 (1972), 627- 629. Zbl0241.55009MR293632
  16. 16 M. Walker, Homotopy pullbacks and applications to duality ( To appear). Zbl0352.55014

Citations in EuDML Documents

top
  1. Y. L. Wong, Chain homotopy pullbacks and pushouts
  2. Ronald Brown, Philip J. Higgins, The equivalence of -groupoids and crossed complexes
  3. Timothy Porter, Crossed modules in C a t and a Brown-Spencer theorem for 2 -categories
  4. Andrée Ehresmann, Charles Ehresmann, Multiple functors. II. The monoidal closed category of multiple categories
  5. C. B. Spencer, Y. L. Wong, Pullback and pushout squares in a special double category with connection
  6. Andrée Ehresmann, Charles Ehresmann, Multiple functors. IV. Monoidal closed structures on C a t n
  7. Robert Dawson, Robert Pare, General associativity and general composition for double categories
  8. Ronald Brown, Marek Golasinski, A model structure for the homotopy theory of crossed complexes
  9. R. J. M. Dawson, R. Pare, D. A. Pronk, Free extensions of double categories

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.