Projection d'orbites, formule de Kirillov et formule de Blattner
Michel Duflo; Gerrit Heckman; Michele Vergne
Mémoires de la Société Mathématique de France (1984)
- Volume: 15, page 65-128
- ISSN: 0249-633X
Access Full Article
topHow to cite
topDuflo, Michel, Heckman, Gerrit, and Vergne, Michele. "Projection d'orbites, formule de Kirillov et formule de Blattner." Mémoires de la Société Mathématique de France 15 (1984): 65-128. <http://eudml.org/doc/94846>.
@article{Duflo1984,
author = {Duflo, Michel, Heckman, Gerrit, Vergne, Michele},
journal = {Mémoires de la Société Mathématique de France},
keywords = {Kirillov formula; representation of semisimple Lie groups; Blattner formula; compactly embedded Cartan algebra; Weyl group; orbit; generalized function},
language = {fre},
pages = {65-128},
publisher = {Société mathématique de France},
title = {Projection d'orbites, formule de Kirillov et formule de Blattner},
url = {http://eudml.org/doc/94846},
volume = {15},
year = {1984},
}
TY - JOUR
AU - Duflo, Michel
AU - Heckman, Gerrit
AU - Vergne, Michele
TI - Projection d'orbites, formule de Kirillov et formule de Blattner
JO - Mémoires de la Société Mathématique de France
PY - 1984
PB - Société mathématique de France
VL - 15
SP - 65
EP - 128
LA - fre
KW - Kirillov formula; representation of semisimple Lie groups; Blattner formula; compactly embedded Cartan algebra; Weyl group; orbit; generalized function
UR - http://eudml.org/doc/94846
ER -
References
top- [B-V] D. BARBASCH, D.A. VOGAN : Sketch of proof of Rossmann's character formula (Non publié).
- [Be-Ve.1] N. BERLINE et M. VERGNE : Fourier transform of orbits of the coadjoint representation. Representation theory of reductive groups, Birkhauser, Boston, 1983. Zbl0527.22010
- [Be-Ve.2] N. BERLINE et M. VERGNE : The equivariant index and Kirillov's character formula, à paraître dans American Journal of Mathematics. Zbl0604.58046
- [Be-Ve.3] N. BERLINE et M. VERGNE : Classes caractéristiques équivariantes, Formule de localisation en cohomologie équivariante, Comptes Rendus Acad. Sci. Paris, 295 (1982), pp. 539-541. Zbl0521.57020MR83m:58002
- [Bo] R. BOTT : Vector fields and characteristic numbers, Mich. Math. Journal, 14 (1967), pp. 231-244. Zbl0145.43801MR35 #2297
- [C-R] A. CEREZO et F. ROUVIERE : Solution élémentaire d'un opérateur invariant à gauche sur un groupe de Lie compact. Ann. Sci. Ec. Norm. Sup. 2 (1969), pp. 561-581. Zbl0191.43801MR42 #6869
- [D] M. DUFLO : Construction de représentations unitaires d'un groupe de Lie. In "Harmonic analysis and group representations." C.I.M.E. 1980, ed. Liguori, Naples 1982.
- [Dui] J.J. DUISTERMAAT : Fourier integral operators. Courant Institute, New-York (1973). Zbl0272.47028MR56 #9600
- [D-H] J.J. DUISTERMAAT et G.J. HECKMAN : On the variation in the cohomology of the symplectic form of the reduced phase space. Inventiones Math. 69 (1982), pp. 259-268. Zbl0503.58015MR84h:58051a
- [E] T.J. ENRIGHT : On the fundamental series of a real semi-simple Lie algebra : their irreducibility, resolutions and multiplicity formulae. Annals of Math. 110 (1979), pp. 1-82. Zbl0417.17005MR81a:17003
- [G-St.1] V. GUILLEMIN et S. STERNBERG : Geometric asymptotics. Maths Surveys no 14, A.M.S. Rhode Island (1977). Zbl0364.53011MR58 #24404
- [G-St.2] V. GUILLEMIN et S. STERNBERG : Convexity properties of the moment mapping. Inventiones Math. 67 (1982), pp. 491-513. Zbl0503.58017MR83m:58037
- [H-C.1] HARISH-CHANDRA : The characters of semi-simple Lie groups. Trans. Amer. Math. Soc. 83 (1956), pp. 98-163. Zbl0072.01801MR18,318c
- [H-C.2] HARISH-CHANDRA : Invariant eigen-distributions on a semi-simple Lie group. Trans. Amer. Math. Soc. 119 (1965), pp. 457-508. Zbl0199.46402MR31 #4862d
- [H-C.3] HARISH-CHANDRA : Discrete series for semi-simple Lie groups I. Construction of invariant eigendistributions. Acta Mathematica, 113 (1965), pp. 242-318. Zbl0152.13402MR36 #2744
- [H-C.4] HARISH-CHANDRA : Discrete series for semi-simple Lie groups II Acta Mathematica, 116 (1966), pp. 1-111. Zbl0199.20102MR36 #2745
- [He-S.1] H. HECHT et W. SCHMID : A proof of Blattner's conjecture. Inventiones math., 31 (1975), pp. 129-154. Zbl0319.22012MR53 #715
- [He-S.2] H. HECHT et W. SCHMID : Characters, asymptotic and n-homology of Harish-Chandra modules. Acta Mathematica, 151 (1983), pp. 49-151. Zbl0523.22013MR84k:22026
- [He] G.J. HECKMAN : Projections of orbits and asymptotic behaviour of multiplicities for compact connected Lie groups. Inventiones math. 67 (1982), pp. 333-356. Zbl0497.22006MR84d:22019
- [Kh] M.S. KHALGUI : Caractères des groupes de Lie. Journal of functional analysis, 47 (1982), pp. 64-77. Zbl0507.22009MR84f:22020
- [Ki] A.A. KIRILLOV : Eléments de la théorie des représentations. Ed. M.I.R Moscou, (1974). MR52 #14134
- [L-Ve] G. LION et M. VERGNE : The Weil representation, Maslov index and theta series. Birkhäuser, Boston (1980). Zbl0444.22005
- [P] S. PANEITZ : Communication personnelle (1983).
- [R] W. ROSSMANN : Kirillov's character formula for reductive Lie groups. Inventiones math., 48 (1978), pp. 207-220. Zbl0372.22011MR81g:22012
- [S] W. SCHMID : On the characters of discrete series (the Hermitian symmetric case). Inventiones math., 30 (1975), pp. 47-144. Zbl0324.22007MR53 #714
- [T] P. TORASSO : Sur le caractère de la représentation de Shale-Weil de Mp(n, ℝ) et Sp (n, ℂ). Math. Ann., 252 (1980), pp. 53-86. Zbl0452.22015MR82a:22019
- [Ve] M. VERGNE : On Rossmann's character formula for discrete series. Inventiones Math., 54 (1979), pp. 11-14. Zbl0428.22010MR81d:22017
Citations in EuDML Documents
top- Elisa Prato, Siye Wu, Duistermaat-Heckman measures in a non-compact setting
- Abderrazak Bouaziz, Formule d'inversion d'intégrales orbitales tordues
- P. Delorme, Théorème de Paley-Wiener invariant tordu pour le changement de base
- Patrick Delorme, Inversion des intégrales orbitales sur certains espaces symétriques réductifs
- Stéphane Guillermou, Index of transversally elliptic D-modules
- Paul-Émile Paradan, Spinc-quantization and the K-multiplicities of the discrete series
- Mohamed Salah Khalgui, Pierre Torasso, La formule du caractère pour les groupes de Lie presque algébriques réels
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.