Induced representations and classification for G S p ( 2 , F ) and S p ( 2 , F )

Paul J.jun. Sally; Marko Tadic

Mémoires de la Société Mathématique de France (1993)

  • Volume: 52, page 75-133
  • ISSN: 0249-633X

How to cite

top

Sally, Paul J.jun., and Tadic, Marko. "Induced representations and classification for $GSp(2,F)$ and $Sp(2,F)$." Mémoires de la Société Mathématique de France 52 (1993): 75-133. <http://eudml.org/doc/94904>.

@article{Sally1993,
author = {Sally, Paul J.jun., Tadic, Marko},
journal = {Mémoires de la Société Mathématique de France},
keywords = {-adic field; reducibility; parabolic subgroups; cuspidal representations; irreducible unitary representations},
language = {eng},
pages = {75-133},
publisher = {Société mathématique de France},
title = {Induced representations and classification for $GSp(2,F)$ and $Sp(2,F)$},
url = {http://eudml.org/doc/94904},
volume = {52},
year = {1993},
}

TY - JOUR
AU - Sally, Paul J.jun.
AU - Tadic, Marko
TI - Induced representations and classification for $GSp(2,F)$ and $Sp(2,F)$
JO - Mémoires de la Société Mathématique de France
PY - 1993
PB - Société mathématique de France
VL - 52
SP - 75
EP - 133
LA - eng
KW - -adic field; reducibility; parabolic subgroups; cuspidal representations; irreducible unitary representations
UR - http://eudml.org/doc/94904
ER -

References

top
  1. [BZ] Bernstein, J. and ZELEVINSKY, A.V., Induced representations of reductive p-adic groups I, Ann. Sci. École Norm Sup. 10 (1977), 441-472. Zbl0412.22015MR58 #28310
  2. [BWh] Borel, A. and Wallach, N., Continuous cohomology, discrete subgroups, and representations of reductive groups, Princeton University Press, Princeton, (1980). Zbl0443.22010MR83c:22018
  3. [C] Casselman, W., Introduction to the theory of admissible representations of p-adic reductive groups, preprint. 
  4. [GeKn] Gelbart, S.S. and Knapp, A. W., L-indistinguishability and R groups for the special linear group, Advan. in Math., 43 (1982), 101-121. Zbl0493.22005MR83j:22009
  5. [Gu] Gustafson, R., The degenerate principal series for Sp(2n), Mem. of the Amer. Math. Society, 248 (1981), 1-81. Zbl0482.22013MR83e:22021
  6. [HMr] Howe, R. and Moore, C.C., Asymptotic properties of unitary representations, J. Functional Analysis, 32, No. 1 (1979), 72-96. Zbl0404.22015MR80g:22017
  7. [J] Jantzen, C., Degenerate principal series for symplectic groups, to appear in Mem. of the Amer. Math. Society. Zbl0814.22004
  8. [Ke] Keys, D., On the decomposition of reducible principal series representations of p-adic Chevalley groups, Pacific J. Math, 101 (1982), 351-388. Zbl0438.22010MR84d:22032
  9. [Mi] Milici, D., On C*-algebras with bounded trace, Glasnik Mat., 8(28) (1973), 7-21. Zbl0265.46072MR48 #2781
  10. [Mo] Moy, A., Representations of GSp(4) over a p-adic field : parts 1 and 2, Compositio Math., 66 (1988), 237-328. Zbl0662.22012MR90d:22022
  11. [R1] Rodier, F., Décomposition de la série principale des groupes réductifs p-adiques, Non-Commutative Harmonic Analysis, Lecture Notes in Math. 880, Springer-Verlag, Berlin (1981). Zbl0465.22009MR83i:22029
  12. [R2] Rodier, F.Sur les représentations non ramifiées des groupes réductifs p-adiques ; l'example de GSp(4), Bull. Soc. Math. France, 116 (1988), 15-42. Zbl0662.22011MR89i:22033
  13. [S1] Shahidi, F., A proof of Langlands conjecture on Plancherel measures ; complementary series for p-adic groups, Ann. of Math., 132 (1990), 273-330. Zbl0780.22005MR91m:11095
  14. [S2] Shahidi, F., Langlands' conjecture on Plancherel measures of p-adic groups, preprint. 
  15. [S3] Shahidi, F., L-functions and representation theory of p-adic, preprint. 
  16. [S4] Shahidi, F., Letter. 
  17. [T1] Tadić, M., Classification of unitary representations in irreducible representations of general linear group (non-archimedean case), Ann. Sci. École Norm. Sup, 19 (1986), 335-382. Zbl0614.22005MR88b:22021
  18. [T2] Tadić, M.Induced representations of GL(n, A) for p-adic division algebras A, J. reine angew. Math., 405 (1990), 48-77. Zbl0684.22008MR91i:22025
  19. [T3] Tadić, M., Notes on representations of non-archimedean SL(n), Pacific J. Math. (to appear). 
  20. [T4] Tadić, M., Representations of p-adic symplectic groups, preprint. 
  21. [T5] Tadić, M., On Jaquet modules of induced representations of p-adic symplectic groups, preprint. 
  22. [T6] Tadić, M., A structure arising from induction and restriction of representations of classical p-adic groups, preprint. 
  23. [T7] Tadić, M., Representations of classical p-adic groups, preprint. 
  24. [Wd] Waldspurger, J.-L., Un exercice sur GSp(4, F) et les représentations de Weil, Bull. Soc. Math. France, 115 (1987), 35-69. Zbl0635.22016MR89a:22033
  25. [Z1] Zelevinsky, A.V., Induced representations of reductive p-adic groups II, On irreducible representations of GL(n), Ann. Sci École Norm Sup., 13 (1980), 165-210. Zbl0441.22014MR83g:22012
  26. [Z2] Zelevinsky, A.V., Representations of Finite Classical Groups, A Hopf Algebra Approach, Lecture Notes in Math 869, Springer-Verlag, Berlin, (1981). Zbl0465.20009MR83k:20017

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.