Absolutely continuous functions of two variables in the sense of Carathéodory.
We establish new efficient conditions sufficient for the unique solvability of the initial value problem for two-dimensional systems of linear functional differential equations with monotone operators.
Tento článek ukazuje možné použití Floquetovy teorie v otázce ljapunovské stability lineárních diferenciálních rovnic druhého řádu s periodickými koeficienty. Jsou uvedeny obecné věty o stabilitě řešení uvažovaných rovnic v řeči Floquetových multiplikátorů, které jsou následně využity v důkazech jednoduchých efektivních kritérií. Je také vysvětlena souvislost mezi Ljapunovovými a Floquetovými charakteristickými exponenty a ukázáno použití těchto pojmů mimo jiné v otázce stability rovnovážného stavu...
We study the question of the existence, uniqueness, and continuous dependence on parameters of the Carathéodory solutions to the Cauchy problem for linear partial functional-differential equations of hyperbolic type. A theorem on the Fredholm alternative is also proved. The results obtained are new even in the case of equations without argument deviations, because we do not suppose absolute continuity of the function the Cauchy problem is prescribed on, which is rather usual assumption in the existing...
Some Wintner and Nehari type oscillation criteria are established for the second-order linear delay differential equation.
Nonimprovable, in a certain sense, sufficient conditions for the unique solvability of the boundary value problem are established, where is a linear bounded operator, , , and . The question on the dimension of the solution space of the homogeneous problem is discussed as well.
Nonimprovable sufficient conditions for the solvability and unique solvability of the problem are established, where is a continuous operator satisfying the Carathèodory conditions, is a continuous functional, and .
Page 1