Currently displaying 1 – 20 of 12061

Showing per page

Order by Relevance | Title | Year of publication

Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions

A. Pełczyński — 1968

CONTENTSIntroduction................................................................................................................................................. 5Preliminaries.............................................................................................................................................. 9§ 1. Regular operators and their products............................................................................................ 11§ 2. Exaves. Extension and averaging operators....................................................................................

Covariant differentiation of geometric objects

A. Szybiak — 1967

CONTENTSI. Introduction................................................................................................................. 5II. Covariant differentiation in fibre bundles............................................................. 7III. Connection with the Lie derivation....................................................................... 16IV. Connections in the bundles of differential objects........................................... 19V. Definition of the covariant derivative...

Algebras of the cohomology operations in some cohomology theories

A. Jankowski — 1974

Contents0. Introduction............................................................................................................................................. 51. Preliminaries.......................................................................................................................................... 62. Generalized cohomology theories with a coefficient group Z p .............................................. 83. Cohomology theory BP* ( , Z p )........................................................................................................

Some functional differential equations

A. Pelczar — 1973

CONTENTSIntroduction............................................................................................................................................................................... 5Chapter 0. PRELIMINARIES0.1. (Preliminary remarks and notation)............................................................................................................................. 90.2. (Notation — continuation).................................................................................................................................................

Compact Abelian groups and extensions of Haar measures

A. Hulanicki — 1964

ContentsIntroduction.................................................................................................................... 31. Preliminaries (topology measure).................................................................... 32. Problems and the theorem.................................................................................... 73. Preliminaries (abstract groups, Cartesian products)....................................... 94. Preliminaries (automorphisms, duality theory).....................................................

An axiomatics of non-Desarguean geometry based on the half-plane as the primitive notion

A. Śniatycki — 1968

CONTENTSIntroduction................................................................................................................................................. 5PART I1. Axioms of Boolean algebra................................................................................................................. 62. Half-planes and their axioms.............................................................................................................. 73. The line.......................................................................................................................................................

The theory of compact vector fields and some of its applications to topology of functional spaces (I)

A. Granas — 1962

§1-3 Lusternik [1] and Schnirelman, Borsuk [3]; see also Tucker [1], Krasnoselskiï [3] and Krein, Fan Ky [1, 2], Lefshetz [1]. TABLE OF CONTENTSINTRODUCTION................................................................................................................................................................................................... 3PRELIMINARIES1. Metric spaces.......................................................................................................................................................................................................

On monotonic solutions of some functional equations

A. Smajdor — 1971

CONTENTSINTRODUCTION ...................................................................................................................................................................6Chapter I. DEFINITIONS AND AUXILIARY THEOREMS..................................................................................................7Chapter II. INCREASING SOLUTIONS OR FUNCTIONAL EQUATION OF THE FIRST ORDER.............................17Chapter III. MONOTONIC SOLUTIONS OF SOME SPECIAL LINEAR FUNCTIONAL...

Page 1 Next

Download Results (CSV)