Fixed point theorems for metric space mappings
CONTENTSIntroduction................................................................................................................................................. 5Preliminaries.............................................................................................................................................. 9§ 1. Regular operators and their products............................................................................................ 11§ 2. Exaves. Extension and averaging operators....................................................................................
CONTENTSI. Introduction................................................................................................................. 5II. Covariant differentiation in fibre bundles............................................................. 7III. Connection with the Lie derivation....................................................................... 16IV. Connections in the bundles of differential objects........................................... 19V. Definition of the covariant derivative...
Contents0. Introduction............................................................................................................................................. 51. Preliminaries.......................................................................................................................................... 62. Generalized cohomology theories with a coefficient group .............................................. 83. Cohomology theory BP* ( , )........................................................................................................
CONTENTSIntroduction............................................................................................................................................................................... 5Chapter 0. PRELIMINARIES0.1. (Preliminary remarks and notation)............................................................................................................................. 90.2. (Notation — continuation).................................................................................................................................................
ContentsIntroduction.................................................................................................................... 31. Preliminaries (topology measure).................................................................... 32. Problems and the theorem.................................................................................... 73. Preliminaries (abstract groups, Cartesian products)....................................... 94. Preliminaries (automorphisms, duality theory).....................................................
CONTENTSIntroduction................................................................................................................................................. 5PART I1. Axioms of Boolean algebra................................................................................................................. 62. Half-planes and their axioms.............................................................................................................. 73. The line.......................................................................................................................................................
§1-3 Lusternik [1] and Schnirelman, Borsuk [3]; see also Tucker [1], Krasnoselskiï [3] and Krein, Fan Ky [1, 2], Lefshetz [1]. TABLE OF CONTENTSINTRODUCTION................................................................................................................................................................................................... 3PRELIMINARIES1. Metric spaces.......................................................................................................................................................................................................
CONTENTSINTRODUCTION ...................................................................................................................................................................6Chapter I. DEFINITIONS AND AUXILIARY THEOREMS..................................................................................................7Chapter II. INCREASING SOLUTIONS OR FUNCTIONAL EQUATION OF THE FIRST ORDER.............................17Chapter III. MONOTONIC SOLUTIONS OF SOME SPECIAL LINEAR FUNCTIONAL...
Page 1 Next