Los M3-Reticulados.
MV-algebras were introduced by Chang to prove the completeness of the infinite-valued Łukasiewicz propositional calculus. Recently, algebraic theory of MV-algebras has been intensively studied. Wajsberg algebras are just a reformulation of Chang MV-algebras where implication is used instead of disjunction. Using these equivalence, in this paper we provide conditions for the existence of an epimorphism between two finite MV-algebras and . Specifically, we define the mv-functions with domain in...
In 2000, Figallo and Sanza introduced -valued Łukasiewicz-Moisil algebras which are both particular cases of matrix Łukasiewicz algebras and a generalization of -valued Łukasiewicz-Moisil algebras. Here we initiate an investigation into the class of tense -valued Łukasiewicz-Moisil algebras (or tense LM-algebras), namely -valued Łukasiewicz-Moisil algebras endowed with two unary operations called tense operators. These algebras constitute a generalization of tense Łukasiewicz-Moisil...
Modal pseudocomplemented De Morgan algebras (or mpM-algebras) were investigated in A. V. Figallo, N. Oliva, A. Ziliani, Modal pseudocomplemented De Morgan algebras, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 53, 1 (2014), pp. 65–79, and they constitute a proper subvariety of the variety of pseudocomplemented De Morgan algebras satisfying xΛ(∼x)* = (∼(xΛ(∼x)*))* studied by H. Sankappanavar in 1987. In this paper the study of these algebras is continued. More precisely, new characterizations...
In 2015, tense n × m-valued Lukasiewicz–Moisil algebras (or tense LMn×m-algebras) were introduced by A. V. Figallo and G. Pelaitay as an generalization of tense n-valued Łukasiewicz–Moisil algebras. In this paper we continue the study of tense LMn×m-algebras. More precisely, we determine a Priestley-style duality for these algebras. This duality enables us not only to describe the tense LMn×m-congruences on a tense LMn×m-algebra, but also to characterize the simple and subdirectly irreducible tense...
Modal pseudocomplemented De Morgan algebras (or -algebras for short) are investigated in this paper. This new equational class of algebras was introduced by A. V. Figallo and P. Landini ([Figallo, A. V., Landini, P.: Notes on -valued modal algebras Preprints del Instituto de Ciencias Básicas, Univ. Nac. de San Juan 1 (1990), 28–37.]) and they constitute a proper subvariety of the variety of all pseudocomplemented De Morgan algebras satisfying . Firstly, a topological duality for these algebras...
Page 1