The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 21

Showing per page

Order by Relevance | Title | Year of publication

From pseudodifferential analysis to modular form theory

André Unterberger — 1999

Journées équations aux dérivées partielles

Taking advantage of methods originating with quantization theory, we try to get some better hold - if not an actual construction - of Maass (non-holomorphic) cusp-forms. We work backwards, from the rather simple results to the mostly devious road used to prove them.

A spectral analysis of automorphic distributions and Poisson summation formulas

André Unterberger — 2004

Annales de l’institut Fourier

Automorphic distributions are distributions on d , invariant under the linear action of the group S L ( d , ) . Combs are characterized by the additional requirement of being measures supported in d : their decomposition into homogeneous components involves the family ( 𝔈 i λ d ) λ , of Eisenstein distributions, and the coefficients of the decomposition are given as Dirichlet series 𝒟 ( s ) . Functional equations of the usual (Hecke) kind relative to 𝒟 ( s ) turn out to be equivalent to the invariance of the comb under some modification...

Ouverts stablement convexes par rapport à un opérateur différentiel

André Unterberger — 1972

Annales de l'institut Fourier

On montre l’équivalence entre certaines inégalités “à la Carleman” et certaines propriétés de régularité des solutions à support compact d’équations aux dérivées partielles à coefficients constants : P ( D ) étant un opérateur différentiel sur R n , on en déduit une caractérisation, en termes d’inégalités L 2 , des ouverts Ω de R n tels que Ω × R k soit P ( D ) -convexe pour tout entier k .

Résolution d'équations aux dérivées partielles dans des espaces de distributions d'ordre de régularité variable

André Unterberger — 1971

Annales de l'institut Fourier

L’objet de cet article est de prouver des théorèmes du genre suivant : “Soient P un opérateur différentiel sur R n , ρ une fonction C à valeurs réelles, k un nombre réel et u une distribution à support compact : alors, si P u H ρ , u H ρ + k ” ; l’espace H ρ est ici l’espace de Sobolev “d’ordre variable” associé à ρ  ; bien entendu, il faut des hypothèses sur P , ρ et k . Les cas traités sont : 1) certains opérateurs à coefficients variables déjà considérés dans le chapitre VIII du livre de L. Hörmander ; ...

Oscillateur harmonique et opérateurs pseudodifférentiels

André Unterberger — 1979

Annales de l'institut Fourier

On donne des conditions larges sur un champ de normes symplectiques sur R 2 n pour que les opérateurs d’ordre zéro associés opèrent sur L 2 ( R n ) ; les éléments de cet espace se laissent alors écrire comme somme d’états propres, de niveau d’énergie bornée, de la famille d’oscillateurs harmoniques associée.

Page 1 Next

Download Results (CSV)