The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 12 of 12

Showing per page

Order by Relevance | Title | Year of publication

Optimal integrability of the Jacobian of orientation preserving maps

Andrea Cianchi — 1999

Bollettino dell'Unione Matematica Italiana

Dato un qualsiasi spazio invariante per riordinamenti X Ω su un insieme aperto Ω R n , si determina il più piccolo spazio invariante per riordinamenti Y Ω con la proprietà che se u : Ω R n è una applicazione che mantiene l'orientamento e D u n X Ω , allora det D u appartiene localmente a Y Ω .

A sharp iteration principle for higher-order Sobolev embeddings

Andrea CianchiLuboš PickLenka Slavíková — 2014

Banach Center Publications

We survey results from the paper [CPS] in which we developed a new sharp iteration method and applied it to show that the optimal Sobolev embeddings of any order can be derived from isoperimetric inequalities. We prove thereby that the well-known link between first-order Sobolev embeddings and isoperimetric inequalities translates to embeddings of any order, a fact that had not been known before. We show a general reduction principle that reduces Sobolev type inequalities of any order involving...

Gradient regularity via rearrangements for p -Laplacian type elliptic boundary value problems

Andrea CianchiVladimir G. Maz'ya — 2014

Journal of the European Mathematical Society

A sharp estimate for the decreasing rearrangement of the length of the gradient of solutions to a class of nonlinear Dirichlet and Neumann elliptic boundary value problems is established under weak regularity assumptions on the domain. As a consequence, the problem of gradient bounds in norms depending on global integrability properties is reduced to one-dimensional Hardy-type inequalities. Applications to gradient estimates in Lebesgue, Lorentz, Zygmund, and Orlicz spaces are presented.

Page 1

Download Results (CSV)