Nombres normaux
Nous rassemblons divers résultats sur les nombres normaux et en déduisons de nouveaux résultats.
Nous rassemblons divers résultats sur les nombres normaux et en déduisons de nouveaux résultats.
Nous inspirant de la construction de Champernowne d’un nombre normal en base 10 nous construisons un ensemble de nombres “self-normaux“ au sens de Schmeling ; cet ensemble est non dénombrable et dense dans .
Soit un nombre de Pisot de degré ; nous avons montré précédemment que l’endomorphisme du tore dont est valeur propre est facteur du -shift bilatéral par une application continue ; nous prouvons ici (théorème 1) que l’application conserve l’entropie de toute mesure invariante sur le -shift. Ceci permet de définir l’entropie d’un nombre dans la base et d’en étudier la stabilité. Nous généralisons également des résultats de Kamae, Rauzy et Bernay.
En s’inspirant d’un article de Feldman et Smorodinsky on étudie l’apparition d’un bloc de chiffres fixé dans le -développement de . On montre que si et sont des nombres de Pisot non équivalents, les ensembles des nombres normaux au sens des chiffres pour et sont différents, et que si est un Pisot et un entier algébrique non équivalent à , les ensembles des nombres géométriquement normaux relativement à et sont distincts.
Soit un nombre de Pisot ; nous montrons que pour tout entier assez grand il existe une matrice carrée à coefficients positifs ou nuls dont l’ordre est égal au degré de et dont est valeur propre. Soit le -développement de ; si est un nombre de Pisot, alors la suite est périodique après un certain rang (pour , ) et le polynôme est appelé polynôme de Parry. Nous montrons qu’il existe un ensemble relativement dense d’entiers tels que le polynôme...
Page 1