The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

Nombres normaux

Anne Bertrand-Mathis — 1996

Journal de théorie des nombres de Bordeaux

Nous rassemblons divers résultats sur les nombres normaux et en déduisons de nouveaux résultats.

Nombres self normaux

Anne Bertrand-Mathis — 2013

Bulletin de la Société Mathématique de France

Nous inspirant de la construction de Champernowne d’un nombre normal en base 10 nous construisons un ensemble de nombres “self-normaux“ au sens de Schmeling ; cet ensemble est non dénombrable et dense dans [ 1 , [ .

Applications de la notion d'entropie au développement d'un nombre réel dans une base de Pisot

Anne Bertrand-Mathis — 1985

Annales de l'institut Fourier

Soit θ un nombre de Pisot de degré s  ; nous avons montré précédemment que l’endomorphisme du tore T s dont θ est valeur propre est facteur du θ -shift bilatéral par une application continue q s  ; nous prouvons ici (théorème 1) que l’application q s conserve l’entropie de toute mesure invariante sur le θ -shift. Ceci permet de définir l’entropie d’un nombre dans la base θ et d’en étudier la stabilité. Nous généralisons également des résultats de Kamae, Rauzy et Bernay.

Nombres normaux dans diverses bases

Anne Bertrand-Mathis — 1995

Annales de l'institut Fourier

En s’inspirant d’un article de Feldman et Smorodinsky on étudie l’apparition d’un bloc de chiffres fixé dans le θ -développement de β n . On montre que si β et θ sont des nombres de Pisot non équivalents, les ensembles des nombres normaux au sens des chiffres pour β et θ sont différents, et que si θ est un Pisot et β un entier algébrique non équivalent à θ , les ensembles des nombres géométriquement normaux relativement à β et θ sont distincts.

Nombres de Pisots, matrices primitives et bêta-conjugués

Anne Bertrand-Mathis — 2012

Journal de Théorie des Nombres de Bordeaux

Soit β un nombre de Pisot ; nous montrons que pour tout entier n assez grand il existe une matrice carrée à coefficients positifs ou nuls dont l’ordre est égal au degré de β et dont β n est valeur propre. Soit β = a 1 / β + a 2 / β 2 + + a n / β n + le β -développement de β  ; si β est un nombre de Pisot, alors la suite ( a n ) n 1 est périodique après un certain rang n 0 (pour n n 0 , a n + k = a n ) et le polynôme X n 0 + k - ( a 1 X n 0 + k - 1 + + a n 0 + k ) - ( X n 0 - ( a 1 X n 0 + + a n 0 ) ) est appelé polynôme de Parry. Nous montrons qu’il existe un ensemble relativement dense d’entiers n tels que le polynôme...

Page 1

Download Results (CSV)