Sur l'arithmétique d'une extension diédrale
On étudie ici du point de vue de la dualité les réseaux de dimension ayant un automorphisme d’ordre . On y rencontre en particulier le premier exemple irrationnel de couple de réseaux duaux extrême pour le produit de leurs constantes d’Hermite, et l’on donne une réponse partielle à un problème de Conway et Sloane sur les réseaux isoduaux.
L’anneau des entiers d’une extension galoisienne de peut ne pas être localement libre sur son ordre associé dans l’algèbre du groupe : c’est le résultat principal de l’étude de la structure galoisienne des extensions sauvagement ramifiées d’un corps local absolument non ramifié, dans le cas où le groupe d’inertie est cyclique.
Étant donnée une extension galoisienne de groupe de Galois diédral, on montre que l’anneau des entiers de est un -module isomorphe à l’ordre formé des éléments de qui transportent dans lui-même (ordre décrit explicitement suivant la ramification de l’extension . On a rattaché cette étude à la recherche, pour chaque ordre de dans contenant , d’invariants caractérisant à un isomorphisme près les modules sur , et qui permettent notamment un calcul du groupe des classes projectives...
In this paper, we describe the sublattices of some lattices, extending previous results of [Ber]. Our description makes intensive use of graphs.
On associe à toute extension finie d’un corps de caractéristique 2 une forme quadratique non dégénérée de rang pair égal à où , dont on détermine les invariants. On applique ensuite cette étude à la recherche de polynômes dépendant de peu de paramètres permettant de définir des familles d’extensions de degré donné.
Page 1