The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 28

Showing per page

Order by Relevance | Title | Year of publication

Sur la fonction de Green pour un domaine fin

Bent Fuglede — 1975

Annales de l'institut Fourier

Dans le cadre axiomatique de M. Brelot et R.-M. Hervé (cas A 2 y compris l’axiome de domination) on montre que, pour tout domaine U par rapport à la topologie fine et pour tout point y U , la fonction (“fine ”) de Green pour U à pôle y est caractérisée (à un facteur constant près) comme un potentiel fin > 0 relatif à U qui est finement harmonique dans U { y } .

Connexion en topologie fine et balayage des mesures

Bent Fuglede — 1971

Annales de l'institut Fourier

On montre d’abord que la topologie fine est connexe et localement connexe, dans le cas d’un espace harmonique Ω satisfaisant au groupe d’axiomes ( A 1 ) de Brelot (y compris l’axiome de domination). Un autre résultat principal (qu’on n’établit complètement ici que pour le cas classique d’un espace de Green) affirme que, pour toute mesure positive μ sur Ω , soit à support compact, et pour toute base B Ω telle que μ ( B ) = 0 , la mesure balayée μ B a pour support fin la frontière fine de la réunion de toutes les composantes...

Harmonic morphisms between riemannian manifolds

Bent Fuglede — 1978

Annales de l'institut Fourier

A harmonic morphism f : M N between Riemannian manifolds M and N is by definition a continuous mappings which pulls back harmonic functions. It is assumed that dim M dim N , since otherwise every harmonic morphism is constant. It is shown that a harmonic morphism is the same as a harmonic mapping in the sense of Eells and Sampson with the further property of being semiconformal, that is, a conformal submersion of the points where d f vanishes. Every non-constant harmonic morphism is shown to be an open mapping....

Le théorème du minimax et la théorie fine du potentiel

Bent Fuglede — 1965

Annales de l'institut Fourier

Pour tout noyau semi-continu inférieurement la capacité d’un ensemble compact est égale à une quantité duale, la contenance. Ce théorème équivaut à une extension du théorème du minimax dans la théorie des jeux. L’identité entre capacité et contenance est la clef d’une théorie de la capacitabilité des ensembles analytiques par rapport à un noyau assez général, assujetti à des conditions de régularité habituelles, mais pas nécessairement au principe du maximum. La quasi-continuité des potentiels par...

Page 1 Next

Download Results (CSV)