Invariant Characterization of the Fine Topology in Potential Theory.
Dans le cadre axiomatique de M. Brelot et R.-M. Hervé (cas y compris l’axiome de domination) on montre que, pour tout domaine par rapport à la topologie fine et pour tout point , la fonction (“fine ”) de Green pour à pôle est caractérisée (à un facteur constant près) comme un potentiel fin relatif à qui est finement harmonique dans .
On montre d’abord que la topologie fine est connexe et localement connexe, dans le cas d’un espace harmonique satisfaisant au groupe d’axiomes de Brelot (y compris l’axiome de domination). Un autre résultat principal (qu’on n’établit complètement ici que pour le cas classique d’un espace de Green) affirme que, pour toute mesure positive sur , soit à support compact, et pour toute base telle que , la mesure balayée a pour support fin la frontière fine de la réunion de toutes les composantes...
A harmonic morphism between Riemannian manifolds and is by definition a continuous mappings which pulls back harmonic functions. It is assumed that dim dim, since otherwise every harmonic morphism is constant. It is shown that a harmonic morphism is the same as a harmonic mapping in the sense of Eells and Sampson with the further property of being semiconformal, that is, a conformal submersion of the points where vanishes. Every non-constant harmonic morphism is shown to be an open mapping....
Pour tout noyau semi-continu inférieurement la capacité d’un ensemble compact est égale à une quantité duale, la contenance. Ce théorème équivaut à une extension du théorème du minimax dans la théorie des jeux. L’identité entre capacité et contenance est la clef d’une théorie de la capacitabilité des ensembles analytiques par rapport à un noyau assez général, assujetti à des conditions de régularité habituelles, mais pas nécessairement au principe du maximum. La quasi-continuité des potentiels par...
Page 1 Next