Uniqueness of least energy solutions to a semilinear elliptic equation in R2.
We consider on a two-dimensional flat torus defined by a rectangular periodic cell the following equation It is well-known that the associated energy functional admits a minimizer for each . The present paper shows that these minimizers depend actually only on one variable. As a consequence, setting to be the first eigenvalue of the Laplacian on the torus, the minimizers are identically zero whenever . Our results hold more generally for solutions that are Steiner...
We consider a sequence of multi-bubble solutions of the following fourth order equation where is a positive function, is a bounded and smooth domain in , and is a constant such that . We show that (after extracting a subsequence), for some positive integer , where is the area of the unit sphere in . Furthermore, we obtain the following sharp estimates for : where , and in . This yields a bound of solutions as converges...
By considering an abelian Chern-Simons model, we are led to study the existence of solutions of the Liouville equation with singularities on a flat torus. A non-existence and degree counting for solutions are obtained. The former result has an application in the Chern-Simons model.
Page 1