Currently displaying 1 – 12 of 12

Showing per page

Order by Relevance | Title | Year of publication

Théorie de la diffusion pour le modèle de Nelson et problème infrarouge

Christian Gérard — 2003

Journées équations aux dérivées partielles

Nous considérons dans cet exposé la théorie de la diffusion pour des modèles de Pauli-Fierz sans masse divergents infrarouge. Nous montrons que les représentations CCR obtenues a partir des champs asymptotiques contiennent des secteurs cohérents décrivant un nombre infini de bosons asymptotiquement libres. Nous formulons quelques conjectures qui conduisent a une notion bien définie de sections efficaces inclusives et non inclusives pour les Hamiltoniens de Pauli-Fierz. Finalement nous donnons une...

Scattering theory for 3-particle systems in constant magnetic fields : dispersive case

Christian GérardIzabella Łaba — 1996

Annales de l'institut Fourier

We develop a scattering theory for quantum systems of three charged particles in a constant magnetic field. For such systems, we generalize our earlier results in that we make no additional assumptions on the electric charges of subsystems. The main difficulty is the analysis of the scattering channels corresponding to the motion of the bound states of the neutral subsystems in the directions transversal to the field. The effective kinetic energy of this motion is given by certain dispersive Hamiltonians;...

Positive energy quantization of linear dynamics

Jan DerezińskiChristian Gérard — 2010

Banach Center Publications

The abstract mathematical structure behind the positive energy quantization of linear classical systems is described. It is separated into three stages: the description of a classical system, the algebraic quantization and the Hilbert space quantization. Four kinds of systems are distinguished: neutral bosonic, neutral bosonic, charged bosonic and charged fermionic. The formalism that is described follows closely the usual constructions employed in quantum physics to introduce noninteracting quantum...

Page 1

Download Results (CSV)