The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In questa Nota (cui farà seguito una seconda) si definiscono, tramite iterazione di operatori differenziali singolari su a coefficienti , spazi di funzioni ultradifferenziabili di ordine . Un teorema di tipo Paley-Wiener qui dimostrato permette di concludere che i suddetti spazi sono algebricamente isomorfi allo spazio delle funzioni di Gevrey, di ordine s, pari su .
In questa Nota, che è il seguito della Nota I dallo stesso titolo, si dimostra che l'applicazione , legata all'operatore di trasmutazione associato all'operatore singolare , è un isomorfismo algebrico e topologico tra gli spazi e .
We prove a Paley-Wiener theorem for ultradifferentiable functions of class on a symmetric space of the non compact type and arbitrary rank.
We prove a Paley-Wiener theorem for ultradifferentiable functions of class on a symmetric space of the non compact type and arbitrary rank.
Let be a Riemannian manifold, which possesses a transitive Lie group of isometries. We suppose that , and therefore , are compact and connected. We characterize the Sobolev spaces
by means of the action of on . This characterization allows us to prove a regularity result for the solution of a second order differential equation on by global techniques.
Nikolskii spaces were defined by way of translations on and by way of coordinate maps on a differentiable manifold. In this paper we prove that, for functions with compact support in , we get an equivalent definition if we replace translations by all isometries of . This result seems to justify a definition of Nikolskii type function spaces on riemannian manifolds by means of a transitive group of isometries (provided that one exists). By approximation theorems, we prove that - for homogeneous...
Download Results (CSV)