CONTENTS1. Introduction.......................................................................................52. Traced rings and adjusted modules..................................................93. Moduled categories.........................................................................214. Triangular adjustments....................................................................325. Categories of matrices and -matrix modules...............436. Trace and cotrace reductions.........................................................477....
Assume that K is an algebraically closed field. Let D be a complete discrete valuation domain with a unique maximal ideal p and residue field D/p ≌ K. We also assume that D is an algebra over the field K . We study subamalgam D-suborders (1.2) of tiled D-orders Λ (1.1). A simple criterion for a tame lattice type subamalgam D-order to be of polynomial growth is given in Theorem 1.5. Tame lattice type subamalgam D-orders of non-polynomial growth are completely described in Theorem 6.2 and Corollary...
We prove that the study of the category C-Comod of left comodules over a K-coalgebra C reduces to the study of K-linear representations of a quiver with relations if K is an algebraically closed field, and to the study of K-linear representations of a K-species with relations if K is a perfect field. Given a field K and a quiver Q = (Q₀,Q₁), we show that any subcoalgebra C of the path K-coalgebra K◻Q containing is the path coalgebra of a profinite bound quiver (Q,), and the category C-Comod...
We develop a technique for the study of K-coalgebras and their representation types by applying a quiver technique and topologically pseudocompact modules over pseudocompact K-algebras in the sense of Gabriel [17], [19]. A definition of tame comodule type and wild comodule type for K-coalgebras over an algebraically closed field K is introduced. Tame and wild coalgebras are studied by means of their finite-dimensional subcoalgebras. A weak version of the tame-wild dichotomy theorem of Drozd [13]...
CONTENTS1. Introduction........................................................................................................................................................................................................ 52. Category of complexes.................................................................................................................................................................................... 73. Left stable derived functors of covariant functors..........................................................................................................................................
Download Results (CSV)