The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 55

Showing per page

Order by Relevance | Title | Year of publication

On the birational gonalities of smooth curves

E. Ballico — 2014

Annales UMCS, Mathematica

Let C be a smooth curve of genus g. For each positive integer r the birational r-gonality sr(C) of C is the minimal integer t such that there is L ∈ Pict(C) with h0(C,L) = r + 1. Fix an integer r ≥ 3. In this paper we prove the existence of an integer gr such that for every integer g ≥ gr there is a smooth curve C of genus g with sr+1(C)/(r + 1) > sr(C)/r, i.e. in the sequence of all birational gonalities of C at least one of the slope inequalities fails

The boundedness of singular subvarieties of P N not of a general type and with low codimension

E. Ballico — 2000

Bollettino dell'Unione Matematica Italiana

Sia X P N una varietà irriducibile n -dimensionale localmente Cohen-Macaulay, Q -Gorenstein e non di tipo generale; assumiamo N = 6 , 2 n = N + 2 e dim Sing X = 2 n - N . In questo lavoro dimostriamo che deg X N + 1 N - n e quindi che l'insieme di tutte queste varietà è parametrizzato da un insieme finito di varietà algebriche.

The rank of the multiplication map for sections of bundles on curves

E. Ballico — 2001

Bollettino dell'Unione Matematica Italiana

Sia X una curva liscia di genere g 2 ed A , B fasci coerenti su X . Sia μ A , B : H 0 X , A H 0 X , B H 0 X , A B l'applicazione di moltiplicazione. Qui si dimostra che μ A , B ha rango massimo se A ω X e B è un fibrato stabile generico su X . Diamo un'interpretazione geometrica dell'eventuale non-surgettività di μ A , B quando A , B sono fibrati in rette generati da sezioni globali e deg A + deg B 3 g - 1 . Studiamo anche il caso dim Coker μ A , B 2 .

On the birational gonalities of smooth curves

E. Ballico — 2014

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica

Let C be a smooth curve of genus g . For each positive integer r the birational r -gonality s r ( C ) of C is the minimal integer t such that there is L Pic t ( C ) with h 0 ( C , L ) = r + 1 . Fix an integer r 3 . In this paper we prove the existence of an integer g r such that for every integer g g r there is a smooth curve C of genus g with s r + 1 ( C ) / ( r + 1 ) > s r ( C ) / r , i.e. in the sequence of all birational gonalities of C at least one of the slope inequalities fails.

Page 1 Next

Download Results (CSV)