On désigne par le nombre de partitions de l’entier en parts supérieures ou égales à , et le nombre de partitions de de plus petite part . Dans un précédent article (voir []) un développement asymptotique de est obtenu uniformément pour ; on complète ce développement uniformément pour . Afin de prolonger les résultats jusqu’à , on donne un encadrement de valable pour en utilisant la relation où désigne le nombre de partitions de en exactement parts. On donne aussi une...
Dans cet article, on s’intéresse au problème suivant. Soient un nombre premier, et . Quel est le plus grand entier tel que pour toutes paires de sous-ensembles disjoints de vérifiant , il existe tel que si et si ? Ce problème correspond à l’étude de la complexité de certaines familles d’ensembles pseudo-aléatoires. Dans un premier temps, nous rappelons la définition de cette complexité et resituons le contexte des ensembles pseudo-aléatoires. Ensuite, nous exposons les différents...
On désigne par le nombre de partitions de l’entier en parts supérieures ou égales à . En partant de l’estimation asymptotique de exprimée à l’aide d’un paramètre défini implicitement en fonction de et , nous éliminons ce paramètre en utilisant la formule sommatoire d’Euler-Maclaurin, pour obtenir un développement asymptotique de valable pour , et , étant un réel quelconque.
Download Results (CSV)